Documentation

BrownianMotion.StochasticIntegral.UniformIntegrable

Uniform integrability #

theorem MeasureTheory.UniformIntegrable.add {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {μ : Measure Ω} [NormedAddCommGroup E] {X Y : ιΩE} {p : ENNReal} (hp : 1 p) (hX : UniformIntegrable X p μ) (hY : UniformIntegrable Y p μ) :
UniformIntegrable (X + Y) p μ
theorem MeasureTheory.uniformIntegrable_of_dominated {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} {F : Type u_5} { : MeasurableSpace Ω} {μ : Measure Ω} [NormedAddCommGroup E] [NormedAddCommGroup F] {X : ιΩE} {Y : ιΩF} {p : ENNReal} (hp : 1 p) (hY : UniformIntegrable Y p μ) (mX : ∀ (i : ι), AEStronglyMeasurable (X i) μ) (hX : ∀ (i : ι), ∃ (j : ι), ∀ᵐ (ω : Ω) μ, X i ω Y j ω) :
theorem MeasureTheory.UniformIntegrable.norm {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {μ : Measure Ω} [NormedAddCommGroup E] {X : ιΩE} {p : ENNReal} (hp : 1 p) (hY : UniformIntegrable X p μ) :
UniformIntegrable (fun (t : ι) (ω : Ω) => X t ω) p μ
theorem MeasureTheory.uniformIntegrable_iff_norm {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {μ : Measure Ω} [NormedAddCommGroup E] {X : ιΩE} {p : ENNReal} (hp : 1 p) (mX : ∀ (i : ι), AEStronglyMeasurable (X i) μ) :
UniformIntegrable X p μ UniformIntegrable (fun (t : ι) (ω : Ω) => X t ω) p μ
theorem MeasureTheory.uniformIntegrable_of_dominated_singleton {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {μ : Measure Ω} [NormedAddCommGroup E] {X : ιΩE} {Y : Ω} {p : ENNReal} (hp : 1 p) (hY : MemLp Y p μ) (mX : ∀ (i : ι), AEStronglyMeasurable (X i) μ) (hX : ∀ (i : ι), ∀ᵐ (ω : Ω) μ, X i ω Y ω) :
theorem MeasureTheory.UniformIntegrable.condExp' {ι : Type u_1} {κ : Type u_2} {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {X : ιΩ} (hX : UniformIntegrable X 1 μ) {𝓕 : κMeasurableSpace Ω} (h𝓕 : ∀ (i : κ), 𝓕 i ) :
UniformIntegrable (fun (p : ι × κ) => μ[X p.1|𝓕 p.2]) 1 μ
theorem MeasureTheory.UnifIntegrable.comp {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {μ : Measure Ω} {κ : Type u_6} [NormedAddCommGroup E] {X : ιΩE} {p : ENNReal} (hX : UnifIntegrable X p μ) (f : κι) :
UnifIntegrable (X f) p μ
theorem MeasureTheory.UniformIntegrable.comp {ι : Type u_1} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {μ : Measure Ω} {κ : Type u_6} [NormedAddCommGroup E] {X : ιΩE} {p : ENNReal} (hX : UniformIntegrable X p μ) (f : κι) :
theorem MeasureTheory.UniformIntegrable.condExp {ι : Type u_1} {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {X : ιΩ} (hX : UniformIntegrable X 1 μ) {𝓕 : ιMeasurableSpace Ω} (h𝓕 : ∀ (i : ι), 𝓕 i ) :
UniformIntegrable (fun (i : ι) => μ[X i|𝓕 i]) 1 μ
theorem MeasureTheory.Martingale.ae_eq_condExp_of_isStoppingTime {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {ι : Type u_6} [LinearOrder ι] [OrderBot ι] [Countable ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {𝓕 : Filtration ι } [SigmaFiniteFiltration μ 𝓕] {X : ιΩ} (hX : Martingale X 𝓕 μ) {τ : ΩWithTop ι} ( : IsStoppingTime 𝓕 τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
theorem MeasureTheory.Martingale.uniformIntegrable_stoppedValue {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {ι : Type u_6} [LinearOrder ι] [OrderBot ι] [Countable ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {X : ιΩ} {𝓕 : Filtration ι } [SigmaFiniteFiltration μ 𝓕] (hX : Martingale X 𝓕 μ) (τ : ΩWithTop ι) ( : ∀ (i : ), IsStoppingTime 𝓕 (τ i)) {n : ι} (hτ_le : ∀ (i : ) (ω : Ω), τ i ω n) :
UniformIntegrable (fun (i : ) => stoppedValue X (τ i)) 1 μ
theorem MeasureTheory.Submartingale.uniformIntegrable_stoppedValue {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {ι : Type u_6} [LinearOrder ι] [OrderBot ι] [Countable ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {X : ιΩ} {𝓕 : Filtration ι } [SigmaFiniteFiltration μ 𝓕] (hX : Submartingale X 𝓕 μ) (τ : ΩWithTop ι) ( : ∀ (i : ), IsStoppingTime 𝓕 (τ i)) {n : ι} (hτ_le : ∀ (i : ) (ω : Ω), τ i ω n) :
UniformIntegrable (fun (i : ) => stoppedValue X (τ i)) 1 μ
theorem MeasureTheory.Martingale.uniformIntegrable_stoppedValue_of_countable_range {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {ι : Type u_6} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {X : ιΩ} {𝓕 : Filtration ι } [SigmaFiniteFiltration μ 𝓕] (hX : Martingale X 𝓕 μ) (τ : ΩWithTop ι) ( : ∀ (i : ), IsStoppingTime 𝓕 (τ i)) {n : ι} (hτ_le : ∀ (i : ) (ω : Ω), τ i ω n) (hτ_countable : ∀ (i : ), (Set.range (τ i)).Countable) :
UniformIntegrable (fun (i : ) => stoppedValue X (τ i)) 1 μ
theorem MeasureTheory.Martingale.integrable_stoppedValue_of_countable_range {Ω : Type u_3} { : MeasurableSpace Ω} {μ : Measure Ω} {ι : Type u_6} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {X : ιΩ} {𝓕 : Filtration ι } [SigmaFiniteFiltration μ 𝓕] (hX : Martingale X 𝓕 μ) (τ : ΩWithTop ι) ( : IsStoppingTime 𝓕 τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) (hτ_countable : (Set.range τ).Countable) :
theorem MeasureTheory.TendstoInMeasure.aestronglyMeasurable {α : Type u_7} {β : Type u_8} {ι : Type u_9} {m : MeasurableSpace α} {μ : Measure α} [PseudoEMetricSpace β] {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] {f : ιαβ} {g : αβ} (hf : ∀ (i : ι), AEStronglyMeasurable (f i) μ) (h_tendsto : TendstoInMeasure μ f u g) :
theorem MeasureTheory.seq_tendsto_ae_bounded {α : Type u_7} {β : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : αβ} {g : αβ} {C : ENNReal} (p : ENNReal) (bound : ∀ (n : ), eLpNorm (f n) p μ C) (h_tendsto : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (g x))) (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) :
eLpNorm g p μ C
theorem MeasureTheory.tendstoInMeasure_bounded {α : Type u_7} {β : Type u_8} {ι : Type u_9} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] {f : ιαβ} {g : αβ} {C : ENNReal} (p : ENNReal) (bound : ∀ (i : ι), eLpNorm (f i) p μ C) (h_tendsto : TendstoInMeasure μ f u g) (hf : ∀ (i : ι), AEStronglyMeasurable (f i) μ) :
eLpNorm g p μ C
theorem MeasureTheory.UniformIntegrable.memLp_of_tendstoInMeasure {α : Type u_7} {β : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {fn : αβ} {f : αβ} (p : ENNReal) (hUI : UniformIntegrable fn p μ) (htends : TendstoInMeasure μ fn Filter.atTop f) :
MemLp f p μ
theorem MeasureTheory.UnifIntegrable.unifIntegrable_of_tendstoInMeasure {α : Type u_7} {β : Type u_8} {ι : Type u_9} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {fn : ιαβ} (p : ENNReal) (hUI : UnifIntegrable fn p μ) (hfn : ∀ (i : ι), AEStronglyMeasurable (fn i) μ) :
UnifIntegrable (fun (f : {g : αβ | ∃ (ni : ι), TendstoInMeasure μ (fn ni) Filter.atTop g}) => f) p μ
theorem MeasureTheory.UniformIntegrable.uniformIntegrable_of_tendstoInMeasure {α : Type u_7} {β : Type u_8} {ι : Type u_9} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {fn : ιαβ} (p : ENNReal) (hUI : UniformIntegrable fn p μ) :
UniformIntegrable (fun (f : {g : αβ | ∃ (ni : ι), TendstoInMeasure μ (fn ni) Filter.atTop g}) => f) p μ
theorem MeasureTheory.UniformIntegrable.integrable_of_tendstoInMeasure {α : Type u_7} {β : Type u_8} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {fn : αβ} {f : αβ} (hUI : UniformIntegrable fn 1 μ) (htends : TendstoInMeasure μ fn Filter.atTop f) :