Documentation
BrownianMotion
.
Auxiliary
.
ENNReal
Search
return to top
source
Imports
Init
Mathlib.Analysis.SpecialFunctions.Pow.NNReal
Imported by
ENNReal
.
rpow_max
ENNReal
.
rpow_add_le_two_rpow_mul_add_rpow
ENNReal
.
sum_geometric_two_le
ENNReal
.
ofReal_one_div
ENNReal
.
le_one_div_iff
ENNReal
.
rpow_add_of_add_pos
source
theorem
ENNReal
.
rpow_max
{
x
y
:
ENNReal
}
{
p
:
ℝ
}
(
hp
:
0
≤
p
)
:
max
x
y
^
p
=
max
(
x
^
p
) (
y
^
p
)
source
theorem
ENNReal
.
rpow_add_le_two_rpow_mul_add_rpow
{
p
:
ℝ
}
(
a
b
:
ENNReal
)
(
hp
:
0
≤
p
)
:
(
a
+
b
)
^
p
≤
2
^
p
*
(
a
^
p
+
b
^
p
)
source
theorem
ENNReal
.
sum_geometric_two_le
(
n
:
ℕ
)
:
∑
i
∈
Finset.range
n
,
(
1
/
2
)
^
i
≤
2
source
theorem
ENNReal
.
ofReal_one_div
{
x
:
ℝ
}
(
hx
:
0
<
x
)
:
ENNReal.ofReal
(
1
/
x
)
=
1
/
ENNReal.ofReal
x
source
theorem
ENNReal
.
le_one_div_iff
{
x
y
:
ENNReal
}
:
x
≤
1
/
y
↔
y
≤
1
/
x
source
theorem
ENNReal
.
rpow_add_of_add_pos
{
x
:
ENNReal
}
(
hx
:
x
≠
⊤
)
(
y
z
:
ℝ
)
(
hyz
:
0
<
y
+
z
)
:
x
^
(
y
+
z
)
=
x
^
y
*
x
^
z