Documentation

BrownianMotion.Auxiliary.Jensen

Jensen's inequality for conditional expectations #

theorem MeasureTheory.conditional_jensen {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} {φ : E} [SigmaFinite μ] (hm : m ) (hφ_cvx : ConvexOn Set.univ φ) (hφ_cont : LowerSemicontinuous φ) (hf_int : Integrable f μ) (hφ_int : Integrable (φ f) μ) :
φ μ[f|m] ≤ᶠ[ae μ] μ[φ f|m]
theorem MeasureTheory.norm_condExp_le {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} [IsFiniteMeasure μ] (f : ΩE) :
∀ᵐ (ω : Ω) μ, μ[f|m] ω μ[fun (ω : Ω) => f ω|m] ω
theorem MeasureTheory.enorm_condExp_le {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} [IsFiniteMeasure μ] (f : ΩE) :
∀ᵐ (ω : Ω) μ, μ[f|m] ω‖ₑ ENNReal.ofReal (μ[fun (ω : Ω) => f ω|m] ω)
theorem MeasureTheory.norm_rpow_condExp_le {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} [IsFiniteMeasure μ] {p : ENNReal} (one_le_p : 1 p) (p_ne_top : p ) (hf : MemLp f p μ) :
∀ᵐ (ω : Ω) μ, μ[f|m] ω ^ p.toReal μ[fun (ω : Ω) => f ω ^ p.toReal|m] ω
theorem MeasureTheory.enorm_rpow_condExp_le {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} [IsFiniteMeasure μ] {p : ENNReal} (one_le_p : 1 p) (p_ne_top : p ) (hf : MemLp f p μ) :
∀ᵐ (ω : Ω) μ, μ[f|m] ω‖ₑ ^ p.toReal ENNReal.ofReal (μ[fun (ω : Ω) => f ω ^ p.toReal|m] ω)
theorem MeasureTheory.ofReal_condExp_norm_ae_le_eLpNormEssSup {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} [IsFiniteMeasure μ] (hf : AEStronglyMeasurable f μ) :
∀ᵐ (ω : Ω) μ, ENNReal.ofReal (μ[fun (x : Ω) => f x|m] ω) eLpNormEssSup f μ
theorem MeasureTheory.eLpNorm_condExp_le_eLpNorm {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} [IsFiniteMeasure μ] {p : ENNReal} (hp : 1 p) (f : ΩE) :
eLpNorm μ[f|m] p μ eLpNorm f p μ
theorem MeasureTheory.MemLp.condExp' {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩE} [IsFiniteMeasure μ] {p : ENNReal} (hp : 1 p) (hf : MemLp f p μ) :
MemLp μ[f|m] p μ
theorem MeasureTheory.ae_bdd_condExp_of_ae_bdd' {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {m : MeasurableSpace Ω} {μ : Measure Ω} [IsFiniteMeasure μ] {R : } {f : ΩE} (hbdd : ∀ᵐ (ω : Ω) μ, f ω R) :
∀ᵐ (x : Ω) μ, μ[f|m] x R

If a function f is bounded almost everywhere by R, then so is its conditional expectation.

theorem MeasureTheory.Integrable.uniformIntegrable_condExp' {Ω : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {μ : Measure Ω} [IsFiniteMeasure μ] {ι : Type u_3} {g : ΩE} (hint : Integrable g μ) { : ιMeasurableSpace Ω} (hℱ : ∀ (i : ι), i ) :
UniformIntegrable (fun (i : ι) => μ[g| i]) 1 μ

Given an integrable function g, the conditional expectations of g with respect to a sequence of sub-σ-algebras is uniformly integrable.