Jensen's inequality for conditional expectations #
theorem
MeasureTheory.conditional_jensen
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
{f : Ω → E}
{φ : E → ℝ}
[SigmaFinite μ]
(hm : m ≤ mΩ)
(hφ_cvx : ConvexOn ℝ Set.univ φ)
(hφ_cont : LowerSemicontinuous φ)
(hf_int : Integrable f μ)
(hφ_int : Integrable (φ ∘ f) μ)
:
theorem
MeasureTheory.norm_condExp_le
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
[IsFiniteMeasure μ]
(f : Ω → E)
:
theorem
MeasureTheory.enorm_condExp_le
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
[IsFiniteMeasure μ]
(f : Ω → E)
:
theorem
MeasureTheory.norm_rpow_condExp_le
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
{f : Ω → E}
[IsFiniteMeasure μ]
{p : ENNReal}
(one_le_p : 1 ≤ p)
(p_ne_top : p ≠ ⊤)
(hf : MemLp f p μ)
:
theorem
MeasureTheory.enorm_rpow_condExp_le
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
{f : Ω → E}
[IsFiniteMeasure μ]
{p : ENNReal}
(one_le_p : 1 ≤ p)
(p_ne_top : p ≠ ⊤)
(hf : MemLp f p μ)
:
theorem
MeasureTheory.ofReal_condExp_norm_ae_le_eLpNormEssSup
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
{f : Ω → E}
[IsFiniteMeasure μ]
(hf : AEStronglyMeasurable f μ)
:
theorem
MeasureTheory.eLpNorm_condExp_le_eLpNorm
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
[IsFiniteMeasure μ]
{p : ENNReal}
(hp : 1 ≤ p)
(f : Ω → E)
:
theorem
MeasureTheory.MemLp.condExp'
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
{f : Ω → E}
[IsFiniteMeasure μ]
{p : ENNReal}
(hp : 1 ≤ p)
(hf : MemLp f p μ)
:
theorem
MeasureTheory.ae_bdd_condExp_of_ae_bdd'
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
[IsFiniteMeasure μ]
{R : ℝ}
{f : Ω → E}
(hbdd : ∀ᵐ (ω : Ω) ∂μ, ‖f ω‖ ≤ R)
:
If a function f is bounded almost everywhere by R, then so is its conditional
expectation.
theorem
MeasureTheory.Integrable.uniformIntegrable_condExp'
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{mΩ : MeasurableSpace Ω}
{μ : Measure Ω}
[IsFiniteMeasure μ]
{ι : Type u_3}
{g : Ω → E}
(hint : Integrable g μ)
{ℱ : ι → MeasurableSpace Ω}
(hℱ : ∀ (i : ι), ℱ i ≤ mΩ)
:
UniformIntegrable (fun (i : ι) => μ[g|ℱ i]) 1 μ
Given an integrable function g, the conditional expectations of g with respect to
a sequence of sub-σ-algebras is uniformly integrable.