Documentation

BrownianMotion.StochasticIntegral.QuadraticVariation

Quadratic variation of local martingales #

theorem ProbabilityTheory.IsLocalMartingale.isLocalSubmartingale_sq_norm {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalMartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
IsLocalSubmartingale (fun (t : ι) (ω : Ω) => X t ω ^ 2) 𝓕 P
noncomputable def ProbabilityTheory.quadraticVariation {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalMartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
ιΩ

The quadratic variation of a local martingale, defined as the predictable part of the Doob-Meyer decomposition of its squared norm.

Equations
Instances For