Documentation

BrownianMotion.StochasticIntegral.DoobMeyer

Doob-Meyer decomposition theorem #

theorem ProbabilityTheory.IsLocalSubmartingale.doob_meyer {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
∃ (M : ιΩ) (A : ιΩ), X = M + A IsLocalMartingale M 𝓕 P (∀ (ω : Ω), IsCadlag fun (x : ι) => M x ω) MeasureTheory.IsPredictable 𝓕 A (∀ (ω : Ω), IsCadlag fun (x : ι) => A x ω) HasLocallyIntegrableSup A 𝓕 P ∀ (ω : Ω), Monotone fun (x : ι) => A x ω
noncomputable def ProbabilityTheory.IsLocalSubmartingale.martingalePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓕 : MeasureTheory.Filtration ι } (X : ιΩ) (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
ιΩ

The local martingale part of the Doob-Meyer decomposition of the local submartingale.

Equations
Instances For
    noncomputable def ProbabilityTheory.IsLocalSubmartingale.predictablePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓕 : MeasureTheory.Filtration ι } (X : ιΩ) (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
    ιΩ

    The predictable part of the Doob-Meyer decomposition of the local submartingale.

    Equations
    Instances For
      theorem ProbabilityTheory.IsLocalSubmartingale.martingalePart_add_predictablePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
      X = martingalePart X hX hX_cadlag + predictablePart X hX hX_cadlag
      theorem ProbabilityTheory.IsLocalSubmartingale.isLocalMartingale_martingalePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
      IsLocalMartingale (martingalePart X hX hX_cadlag) 𝓕 P
      theorem ProbabilityTheory.IsLocalSubmartingale.cadlag_martingalePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) (ω : Ω) :
      IsCadlag fun (x : ι) => martingalePart X hX hX_cadlag x ω
      theorem ProbabilityTheory.IsLocalSubmartingale.isPredictable_predictablePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
      theorem ProbabilityTheory.IsLocalSubmartingale.cadlag_predictablePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) (ω : Ω) :
      IsCadlag fun (x : ι) => predictablePart X hX hX_cadlag x ω
      theorem ProbabilityTheory.IsLocalSubmartingale.hasLocallyIntegrableSup_predictablePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
      theorem ProbabilityTheory.IsLocalSubmartingale.monotone_predictablePart {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} {𝓕 : MeasureTheory.Filtration ι } (hX : IsLocalSubmartingale X 𝓕 P) (hX_cadlag : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) (ω : Ω) :
      Monotone fun (x : ι) => predictablePart X hX hX_cadlag x ω