Multivariate Gaussian distributions #
noncomputable def
ProbabilityTheory.stdGaussian
(E : Type u_1)
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
 :
Standard Gaussian distribution on E.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
ProbabilityTheory.isProbabilityMeasure_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
 :
@[simp]
theorem
ProbabilityTheory.integral_id_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
 :
theorem
ProbabilityTheory.isCentered_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : StrongDual ℝ E)
 :
theorem
ProbabilityTheory.variance_dual_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : StrongDual ℝ E)
 :
theorem
ProbabilityTheory.charFun_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(t : E)
 :
instance
ProbabilityTheory.isGaussian_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
 :
theorem
ProbabilityTheory.charFunDual_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : StrongDual ℝ E)
 :
theorem
ProbabilityTheory.covInnerBilin_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
 :
theorem
ProbabilityTheory.covMatrix_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
 :
theorem
ProbabilityTheory.stdGaussian_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{F : Type u_2}
[NormedAddCommGroup F]
[InnerProductSpace ℝ F]
[MeasurableSpace F]
[BorelSpace F]
(f : E ≃ₗᵢ[ℝ] F)
 :
theorem
ProbabilityTheory.stdGaussian_eq_pi_map_orthonormalBasis
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{ι : Type u_2}
[Fintype ι]
(b : OrthonormalBasis ι ℝ E)
 :
stdGaussian E =   MeasureTheory.Measure.map (fun (x : ι → ℝ) => ∑ i : ι, x i • b i)
    (MeasureTheory.Measure.pi fun (x : ι) => gaussianReal 0 1)
noncomputable def
ProbabilityTheory.multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
(μ : EuclideanSpace ℝ ι)
(S : Matrix ι ι ℝ)
 :
Multivariate Gaussian measure on EuclideanSpace ℝ ι with mean μ and covariance
matrix S.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
ProbabilityTheory.isGaussian_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
 :
@[simp]
theorem
ProbabilityTheory.integral_id_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
 :
theorem
ProbabilityTheory.inner_toEuclideanCLM
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{S : Matrix ι ι ℝ}
(x y : EuclideanSpace ℝ ι)
 :
inner ℝ x ((Matrix.toEuclideanCLM S) y) =   ⇑((EuclideanSpace.basisFun ι ℝ).toBasis.repr x) ⬝ᵥ S.mulVec ⇑((EuclideanSpace.basisFun ι ℝ).toBasis.repr y)
theorem
ProbabilityTheory.covInnerBilin_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
(hS : S.PosSemidef)
 :
theorem
ProbabilityTheory.covariance_eval_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
(hS : S.PosSemidef)
(i j : ι)
 :
covariance (fun (x : EuclideanSpace ℝ ι) => x i) (fun (x : EuclideanSpace ℝ ι) => x j) (multivariateGaussian μ S) =   S i j
theorem
ProbabilityTheory.variance_eval_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
(hS : S.PosSemidef)
(i : ι)
 :
theorem
ProbabilityTheory.hasLaw_eval_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
(hS : S.PosSemidef)
{i : ι}
 :
HasLaw (fun (x : EuclideanSpace ℝ ι) => x i) (gaussianReal (μ i) (S i i).toNNReal) (multivariateGaussian μ S)
theorem
ProbabilityTheory.charFun_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
(hS : S.PosSemidef)
(x : EuclideanSpace ℝ ι)
 :
MeasureTheory.charFun (multivariateGaussian μ S) x =   Complex.exp
    (↑(inner ℝ x μ) * Complex.I - ↑(((ContinuousBilinForm.ofMatrix S (EuclideanSpace.basisFun ι ℝ).toBasis) x) x) / 2)
def
Finset.restrict₂CLM
{ι : Type u_3}
(R : Type u_4)
{M : ι → Type u_5}
[Semiring R]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → TopologicalSpace (M i)]
{I J : Finset ι}
(hIJ : I ⊆ J)
 :
Finset.restrict₂ as a continuous linear map.
Equations
- Finset.restrict₂CLM R hIJ = { toFun := Finset.restrict₂ hIJ, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }
Instances For
theorem
Finset.coe_restrict₂CLM
{ι : Type u_3}
{R : Type u_4}
{M : ι → Type u_5}
[Semiring R]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → TopologicalSpace (M i)]
{I J : Finset ι}
(hIJ : I ⊆ J)
 :
@[simp]
theorem
Finset.restrict₂CLM_apply
{ι : Type u_3}
{R : Type u_4}
{M : ι → Type u_5}
[Semiring R]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → TopologicalSpace (M i)]
{I J : Finset ι}
(hIJ : I ⊆ J)
(x : (i : ↥J) → M ↑i)
(i : ↥I)
 :
def
EuclideanSpace.restrict₂
{ι : Type u_3}
{𝕜 : Type u_4}
[RCLike 𝕜]
{I J : Finset ι}
(hIJ : I ⊆ J)
 :
The restriction from EuclideanSpace 𝕜 J to EuclideanSpace κ I when I ⊆ J.
Equations
- EuclideanSpace.restrict₂ hIJ = (↑(EuclideanSpace.equiv (↥I) 𝕜).symm).comp ((Finset.restrict₂CLM 𝕜 hIJ).comp ↑(EuclideanSpace.equiv (↥J) 𝕜))
Instances For
theorem
ProbabilityTheory.measurePreserving_restrict_multivariateGaussian
{ι : Type u_3}
[DecidableEq ι]
{I J : Finset ι}
{μ : EuclideanSpace ℝ ↥I}
{S : Matrix ↥I ↥I ℝ}
(hS : S.PosSemidef)
(hJI : J ⊆ I)
 :
MeasureTheory.MeasurePreserving (⇑(EuclideanSpace.restrict₂ hJI)) (multivariateGaussian μ S)
  (multivariateGaussian ((EuclideanSpace.restrict₂ hJI) μ)
    (S.submatrix (fun (i : ↥J) => ⟨↑i, ⋯⟩) fun (i : ↥J) => ⟨↑i, ⋯⟩))
theorem
Matrix.PosSemidef.sqrt_one
{n : Type u_4}
{𝕜 : Type u_5}
[Fintype n]
[RCLike 𝕜]
[DecidableEq n]
 :
theorem
ProbabilityTheory.multivariateGaussian_zero_one
{ι : Type u_3}
[DecidableEq ι]
[Fintype ι]
 :