Documentation

BrownianMotion.Gaussian.MultivariateGaussian

Multivariate Gaussian distributions #

Standard Gaussian distribution on E.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem ProbabilityTheory.integrable_eval_pi {ι : Type u_2} {E : Type u_3} [Fintype ι] [NormedAddCommGroup E] {X : ιType u_4} {i : ι} {mX : (i : ι) → MeasurableSpace (X i)} {μ : (i : ι) → MeasureTheory.Measure (X i)} [∀ (i : ι), MeasureTheory.IsFiniteMeasure (μ i)] {f : X iE} (hf : MeasureTheory.Integrable f (μ i)) :
    MeasureTheory.Integrable (fun (x : (i : ι) → X i) => f (x i)) (MeasureTheory.Measure.pi μ)
    theorem ProbabilityTheory.integral_eval_pi {ι : Type u_2} {E : Type u_3} [Fintype ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {X : ιType u_4} {mX : (i : ι) → MeasurableSpace (X i)} {μ : (i : ι) → MeasureTheory.Measure (X i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {i : ι} {f : X iE} (hf : MeasureTheory.AEStronglyMeasurable f (μ i)) :
    (x : (i : ι) → X i), f (x i) MeasureTheory.Measure.pi μ = (x : X i), f x μ i
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ProbabilityTheory.multivariateGaussian_congr_matrix {ι : Type u_2} [Fintype ι] [DecidableEq ι] {μ : EuclideanSpace ι} {S S' : Matrix ι ι } {hS : S.PosSemidef} (h : S = S') :

      Because multivariateGaussian carries a proof that S is positive semidefinite, rw [h] will not solve the goal below. This is what this lemma is used for.

      theorem ProbabilityTheory.covariance_eval_multivariateGaussian {ι : Type u_2} [Fintype ι] [DecidableEq ι] {μ : EuclideanSpace ι} {S : Matrix ι ι } {hS : S.PosSemidef} (i j : ι) :
      covariance (fun (x : EuclideanSpace ι) => x i) (fun (x : EuclideanSpace ι) => x j) (multivariateGaussian μ S hS) = S i j
      theorem ProbabilityTheory.variance_eval_multivariateGaussian {ι : Type u_2} [Fintype ι] [DecidableEq ι] {μ : EuclideanSpace ι} {S : Matrix ι ι } {hS : S.PosSemidef} (i : ι) :
      variance (fun (x : EuclideanSpace ι) => x i) (multivariateGaussian μ S hS) = S i i
      theorem ProbabilityTheory.hasLaw_eval_multivariateGaussian {ι : Type u_2} [Fintype ι] [DecidableEq ι] {μ : EuclideanSpace ι} {S : Matrix ι ι } {hS : S.PosSemidef} {i : ι} :
      HasLaw (fun (x : EuclideanSpace ι) => x i) (gaussianReal (μ i) (S i i).toNNReal) (multivariateGaussian μ S hS)
      def Finset.restrict₂CLM {ι : Type u_3} (R : Type u_4) {M : ιType u_5} [Semiring R] [(i : ι) → AddCommMonoid (M i)] [(i : ι) → Module R (M i)] [(i : ι) → TopologicalSpace (M i)] {I J : Finset ι} (hIJ : I J) :
      ((i : { x : ι // x J }) → M i) →L[R] (i : { x : ι // x I }) → M i

      Finset.restrict₂ as a continuous linear map.

      Equations
      Instances For
        theorem Finset.coe_restrict₂CLM {ι : Type u_3} {R : Type u_4} {M : ιType u_5} [Semiring R] [(i : ι) → AddCommMonoid (M i)] [(i : ι) → Module R (M i)] [(i : ι) → TopologicalSpace (M i)] {I J : Finset ι} (hIJ : I J) :
        @[simp]
        theorem Finset.restrict₂CLM_apply {ι : Type u_3} {R : Type u_4} {M : ιType u_5} [Semiring R] [(i : ι) → AddCommMonoid (M i)] [(i : ι) → Module R (M i)] [(i : ι) → TopologicalSpace (M i)] {I J : Finset ι} (hIJ : I J) (x : (i : { x : ι // x J }) → M i) (i : { x : ι // x I }) :
        (restrict₂CLM R hIJ) x i = x i,
        def EuclideanSpace.restrict₂ {ι : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {I J : Finset ι} (hIJ : I J) :
        EuclideanSpace 𝕜 { x : ι // x J } →L[𝕜] EuclideanSpace 𝕜 { x : ι // x I }

        The restriction from EuclideanSpace 𝕜 J to EuclideanSpace κ I when I ⊆ J.

        Equations
        Instances For
          theorem EuclideanSpace.coe_restrict₂ {ι : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {I J : Finset ι} (hIJ : I J) :
          (restrict₂ hIJ) = (restrict₂ hIJ)
          @[simp]
          theorem EuclideanSpace.restrict₂_apply {ι : Type u_3} {𝕜 : Type u_4} [RCLike 𝕜] {I J : Finset ι} (hIJ : I J) (x : EuclideanSpace 𝕜 { x : ι // x J }) (i : { x : ι // x I }) :
          (restrict₂ hIJ) x i = x i,
          theorem ProbabilityTheory.measurePreserving_restrict_multivariateGaussian {ι : Type u_3} [DecidableEq ι] {I J : Finset ι} {μ : EuclideanSpace { x : ι // x I }} {S : Matrix { x : ι // x I } { x : ι // x I } } {hS : S.PosSemidef} (hJI : J I) :
          MeasureTheory.MeasurePreserving (⇑(EuclideanSpace.restrict₂ hJI)) (multivariateGaussian μ S hS) (multivariateGaussian ((EuclideanSpace.restrict₂ hJI) μ) (S.submatrix (fun (i : { x : ι // x J }) => i, ) fun (i : { x : ι // x J }) => i, ) )
          @[simp]
          theorem Matrix.PosSemidef.sqrt_one {n : Type u_4} {𝕜 : Type u_5} [Fintype n] [RCLike 𝕜] [DecidableEq n] (h : PosSemidef 1) :
          h.sqrt = 1