Documentation

BrownianMotion.Gaussian.MultivariateGaussian

Multivariate Gaussian distributions #

Standard Gaussian distribution on E.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem ProbabilityTheory.integrable_eval_pi {ι : Type u_2} {𝕜 : Type u_3} [Fintype ι] [NormedCommRing 𝕜] {X : ιType u_4} {i : ι} {mX : (i : ι) → MeasurableSpace (X i)} {μ : (i : ι) → MeasureTheory.Measure (X i)} [∀ (i : ι), MeasureTheory.IsFiniteMeasure (μ i)] {f : X i𝕜} (hf : MeasureTheory.Integrable f (μ i)) :
    MeasureTheory.Integrable (fun (x : (i : ι) → X i) => f (x i)) (MeasureTheory.Measure.pi μ)
    theorem ProbabilityTheory.integral_eval_pi {ι : Type u_2} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {X : ιType u_4} {i : ι} {mX : (i : ι) → MeasurableSpace (X i)} {μ : (i : ι) → MeasureTheory.Measure (X i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {f : X i𝕜} :
    (x : (i : ι) → X i), f (x i) MeasureTheory.Measure.pi μ = (x : X i), f x μ i
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ProbabilityTheory.covariance_eval_multivariateGaussian {ι : Type u_2} [Fintype ι] [DecidableEq ι] {μ : EuclideanSpace ι} {S : Matrix ι ι } {hS : S.PosSemidef} (i j : ι) :
      covariance (fun (x : EuclideanSpace ι) => x i) (fun (x : EuclideanSpace ι) => x j) (multivariateGaussian μ S hS) = S i j
      theorem ProbabilityTheory.variance_eval_multivariateGaussian {ι : Type u_2} [Fintype ι] [DecidableEq ι] {μ : EuclideanSpace ι} {S : Matrix ι ι } {hS : S.PosSemidef} (i : ι) :
      variance (fun (x : EuclideanSpace ι) => x i) (multivariateGaussian μ S hS) = S i i