Multivariate Gaussian distributions #
noncomputable def
ProbabilityTheory.stdGaussian
(E : Type u_1)
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
:
Standard Gaussian distribution on E
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
ProbabilityTheory.isProbabilityMeasure_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
theorem
ProbabilityTheory.integrable_eval_pi
{d : ℕ}
{i : Fin d}
{μ : Fin d → MeasureTheory.Measure ℝ}
[∀ (i : Fin d), MeasureTheory.IsProbabilityMeasure (μ i)]
{f : ℝ → ℝ}
(hf : MeasureTheory.Integrable f (μ i))
:
MeasureTheory.Integrable (fun (a : Fin d → ℝ) => f (a i)) (MeasureTheory.Measure.pi μ)
theorem
ProbabilityTheory.integral_eval_pi
{d : ℕ}
{i : Fin d}
{μ : Fin d → MeasureTheory.Measure ℝ}
[∀ (i : Fin d), MeasureTheory.IsProbabilityMeasure (μ i)]
{f : ℝ → ℝ}
(hf : MeasureTheory.Integrable f (μ i))
:
theorem
ProbabilityTheory.isCentered_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.variance_dual_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : NormedSpace.Dual ℝ E)
:
instance
ProbabilityTheory.isGaussian_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
noncomputable def
ProbabilityTheory.multivariateGaussian
{d : ℕ}
(μ : EuclideanSpace ℝ (Fin d))
(S : Matrix (Fin d) (Fin d) ℝ)
(hS : S.PosSemidef)
:
Equations
- One or more equations did not get rendered due to their size.