Multivariate Gaussian distributions #
noncomputable def
ProbabilityTheory.stdGaussian
(E : Type u_1)
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
:
Standard Gaussian distribution on E
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
ProbabilityTheory.isProbabilityMeasure_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
theorem
ProbabilityTheory.integrable_eval_pi
{ι : Type u_2}
{𝕜 : Type u_3}
[Fintype ι]
[NormedCommRing 𝕜]
{X : ι → Type u_4}
{i : ι}
{mX : (i : ι) → MeasurableSpace (X i)}
{μ : (i : ι) → MeasureTheory.Measure (X i)}
[∀ (i : ι), MeasureTheory.IsFiniteMeasure (μ i)]
{f : X i → 𝕜}
(hf : MeasureTheory.Integrable f (μ i))
:
MeasureTheory.Integrable (fun (x : (i : ι) → X i) => f (x i)) (MeasureTheory.Measure.pi μ)
theorem
ProbabilityTheory.integral_eval_pi
{ι : Type u_2}
{𝕜 : Type u_3}
[Fintype ι]
[RCLike 𝕜]
{X : ι → Type u_4}
{i : ι}
{mX : (i : ι) → MeasurableSpace (X i)}
{μ : (i : ι) → MeasureTheory.Measure (X i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{f : X i → 𝕜}
:
@[simp]
theorem
ProbabilityTheory.integral_id_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
theorem
ProbabilityTheory.isCentered_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.variance_dual_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.charFun_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(t : E)
:
instance
ProbabilityTheory.isGaussian_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
theorem
ProbabilityTheory.charFunDual_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.covInnerBilin_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
theorem
ProbabilityTheory.covMatrix_stdGaussian
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
:
theorem
ProbabilityTheory.stdGaussian_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{F : Type u_2}
[NormedAddCommGroup F]
[InnerProductSpace ℝ F]
[MeasurableSpace F]
[BorelSpace F]
(f : E ≃ₗᵢ[ℝ] F)
:
theorem
ProbabilityTheory.stdGaussian_eq_pi_map_orthonormalBasis
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{ι : Type u_2}
[Fintype ι]
(b : OrthonormalBasis ι ℝ E)
:
stdGaussian E = MeasureTheory.Measure.map (fun (x : ι → ℝ) => ∑ i : ι, x i • b i)
(MeasureTheory.Measure.pi fun (x : ι) => gaussianReal 0 1)
noncomputable def
ProbabilityTheory.multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
(μ : EuclideanSpace ℝ ι)
(S : Matrix ι ι ℝ)
(hS : S.PosSemidef)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
ProbabilityTheory.isGaussian_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
:
IsGaussian (multivariateGaussian μ S hS)
@[simp]
theorem
ProbabilityTheory.integral_id_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
:
theorem
ProbabilityTheory.inner_toEuclideanCLM
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{S : Matrix ι ι ℝ}
(x y : EuclideanSpace ℝ ι)
:
inner ℝ x ((Matrix.toEuclideanCLM S) y) = ⇑((EuclideanSpace.basisFun ι ℝ).toBasis.repr x) ⬝ᵥ S.mulVec ⇑((EuclideanSpace.basisFun ι ℝ).toBasis.repr y)
theorem
ProbabilityTheory.covInnerBilin_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
:
theorem
ProbabilityTheory.covariance_eval_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
(i j : ι)
:
covariance (fun (x : EuclideanSpace ℝ ι) => x i) (fun (x : EuclideanSpace ℝ ι) => x j) (multivariateGaussian μ S hS) = S i j
theorem
ProbabilityTheory.variance_eval_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
(i : ι)
:
theorem
ProbabilityTheory.measurePreserving_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
{i : ι}
:
MeasureTheory.MeasurePreserving (fun (x : EuclideanSpace ℝ ι) => x i) (multivariateGaussian μ S hS)
(gaussianReal (μ i) (S i i).toNNReal)
theorem
ProbabilityTheory.charFun_multivariateGaussian
{ι : Type u_2}
[Fintype ι]
[DecidableEq ι]
{μ : EuclideanSpace ℝ ι}
{S : Matrix ι ι ℝ}
{hS : S.PosSemidef}
(x : EuclideanSpace ℝ ι)
:
MeasureTheory.charFun (multivariateGaussian μ S hS) x = Complex.exp
(↑(inner ℝ x μ) * Complex.I - ↑(((ContinuousBilinForm.ofMatrix S (EuclideanSpace.basisFun ι ℝ).toBasis) x) x) / 2)