Documentation

KolmogorovExtension4.KolmogorovExtension

theorem MeasureTheory.exists_compact {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) (J : Finset ι) (A : Set ((i : { x : ι // x J }) → α i)) (hA : MeasurableSet A) (ε : ENNReal) ( : 0 < ε) :
∃ (K : Set ((i : { x : ι // x J }) → α i)), IsCompact K IsClosed K K A (P J) (A \ K) ε
theorem MeasureTheory.innerRegular_projectiveFamilyContent {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) {s : Set ((i : ι) → α i)} (hs : s measurableCylinders α) (ε : ENNReal) ( : 0 < ε) :
KclosedCompactCylinders α, K s (projectiveFamilyContent hP) (s \ K) ε
theorem MeasureTheory.projectiveFamilyContent_sigma_additive_of_innerRegular {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i measurableCylinders α) (hf_Union : ⋃ (i : ), f i measurableCylinders α) (h_disj : Pairwise (Function.onFun Disjoint f)) :
(projectiveFamilyContent hP) (⋃ (i : ), f i) = ∑' (i : ), (projectiveFamilyContent hP) (f i)
theorem MeasureTheory.projectiveFamilyContent_iUnion_le_sum_of_innerRegular {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i measurableCylinders α) (hf_Union : ⋃ (i : ), f i measurableCylinders α) :
(projectiveFamilyContent hP) (⋃ (i : ), f i) ∑' (i : ), (projectiveFamilyContent hP) (f i)
noncomputable def MeasureTheory.projectiveLimitWithWeakestHypotheses {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] [(i : ι) → PseudoEMetricSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (i : ι), CompleteSpace (α i)] (P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)) [∀ (i : Finset ι), IsFiniteMeasure (P i)] (hP : IsProjectiveMeasureFamily P) :
Measure ((i : ι) → α i)

Projective limit of a projective measure family.

Equations
Instances For
    theorem MeasureTheory.projectiveFamilyContent_sigma_additive {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i measurableCylinders α) (hf_Union : ⋃ (i : ), f i measurableCylinders α) (h_disj : Pairwise (Function.onFun Disjoint f)) :
    (projectiveFamilyContent hP) (⋃ (i : ), f i) = ∑' (i : ), (projectiveFamilyContent hP) (f i)
    theorem MeasureTheory.projectiveFamilyContent_iUnion_le_sum {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i measurableCylinders α) (hf_Union : ⋃ (i : ), f i measurableCylinders α) :
    (projectiveFamilyContent hP) (⋃ (i : ), f i) ∑' (i : ), (projectiveFamilyContent hP) (f i)
    noncomputable def MeasureTheory.projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] (P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)) [∀ (i : Finset ι), IsFiniteMeasure (P i)] (hP : IsProjectiveMeasureFamily P) :
    Measure ((i : ι) → α i)

    Projective limit of a projective measure family.

    Equations
    Instances For
      theorem MeasureTheory.isProjectiveLimit_projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) :

      Kolmogorov extension theorem: for any projective measure family P, there exists a measure on Π i, α i which is the projective limit of P. That measure is given by projectiveLimit P hP, where hP : IsProjectiveMeasureFamily P. The projective limit is unique: see IsProjectiveLimit.unique.

      instance MeasureTheory.isFiniteMeasure_projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), IsFiniteMeasure (P I)] (hP : IsProjectiveMeasureFamily P) :
      instance MeasureTheory.isProbabilityMeasure_projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [ : Nonempty ι] {P : (J : Finset ι) → Measure ((j : { x : ι // x J }) → α j)} [∀ (i : Finset ι), IsProbabilityMeasure (P i)] (hP : IsProjectiveMeasureFamily P) :