theorem
MeasureTheory.exists_compact
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP_inner :
∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
(J : Finset ι)
(A : Set ((i : { x : ι // x ∈ J }) → α ↑i))
(hA : MeasurableSet A)
(ε : ENNReal)
(hε : 0 < ε)
:
theorem
MeasureTheory.innerRegular_projectiveFamilyContent
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
(hP_inner :
∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
{s : Set ((i : ι) → α i)}
(hs : s ∈ measurableCylinders α)
(ε : ENNReal)
(hε : 0 < ε)
:
∃ K ∈ closedCompactCylinders α, K ⊆ s ∧ (projectiveFamilyContent hP) (s \ K) ≤ ε
theorem
MeasureTheory.projectiveFamilyContent_sigma_additive_of_innerRegular
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
(hP_inner :
∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ measurableCylinders α)
(h_disj : Pairwise (Function.onFun Disjoint f))
:
theorem
MeasureTheory.projectiveFamilyContent_iUnion_le_sum_of_innerRegular
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
(hP_inner :
∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ measurableCylinders α)
:
noncomputable def
MeasureTheory.projectiveLimitWithWeakestHypotheses
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
[(i : ι) → PseudoEMetricSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (i : ι), CompleteSpace (α i)]
(P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j))
[∀ (i : Finset ι), IsFiniteMeasure (P i)]
(hP : IsProjectiveMeasureFamily P)
:
Measure ((i : ι) → α i)
Projective limit of a projective measure family.
Equations
Instances For
theorem
MeasureTheory.projectiveFamilyContent_sigma_additive
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ measurableCylinders α)
(h_disj : Pairwise (Function.onFun Disjoint f))
:
theorem
MeasureTheory.projectiveFamilyContent_iUnion_le_sum
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ measurableCylinders α)
:
noncomputable def
MeasureTheory.projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
(P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j))
[∀ (i : Finset ι), IsFiniteMeasure (P i)]
(hP : IsProjectiveMeasureFamily P)
:
Measure ((i : ι) → α i)
Projective limit of a projective measure family.
Equations
- MeasureTheory.projectiveLimit P hP = (MeasureTheory.projectiveFamilyContent hP).measure ⋯ ⋯ ⋯
Instances For
theorem
MeasureTheory.isProjectiveLimit_projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
:
IsProjectiveLimit (projectiveLimit P hP) P
Kolmogorov extension theorem: for any projective measure family P
, there exists a measure
on Π i, α i
which is the projective limit of P
. That measure is given by
projectiveLimit P hP
, where hP : IsProjectiveMeasureFamily P
.
The projective limit is unique: see IsProjectiveLimit.unique
.
instance
MeasureTheory.isFiniteMeasure_projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), IsFiniteMeasure (P I)]
(hP : IsProjectiveMeasureFamily P)
:
IsFiniteMeasure (projectiveLimit P hP)
instance
MeasureTheory.isProbabilityMeasure_projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[hι : Nonempty ι]
{P : (J : Finset ι) → Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[∀ (i : Finset ι), IsProbabilityMeasure (P i)]
(hP : IsProjectiveMeasureFamily P)
: