Facts about Gaussian characteristic function #
instance
ProbabilityTheory.IsGaussian.isProbabilityMeasure
{E : Type u_1}
[TopologicalSpace E]
[AddCommMonoid E]
[Module ℝ E]
{mE : MeasurableSpace E}
(μ : MeasureTheory.Measure E)
[IsGaussian μ]
:
A Gaussian measure is a probability measure.
theorem
ProbabilityTheory.isGaussian_iff_charFun_eq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.IsFiniteMeasure μ]
:
theorem
ProbabilityTheory.IsGaussian.charFun_eq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[IsGaussian μ]
(t : E)
:
MeasureTheory.charFun μ t = Complex.exp (↑(inner ℝ t (∫ (x : E), id x ∂μ)) * Complex.I - ↑(((covInnerBilin μ) t) t) / 2)
theorem
ProbabilityTheory.isGaussian_iff_gaussian_charFun
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[MeasureTheory.IsFiniteMeasure μ]
:
IsGaussian μ ↔ ∃ (m : E) (f : ContinuousBilinForm ℝ E),
f.IsPosSemidef ∧ ∀ (t : E), MeasureTheory.charFun μ t = Complex.exp (↑(inner ℝ t m) * Complex.I - ↑((f t) t) / 2)
theorem
ProbabilityTheory.gaussian_charFun_congr
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[MeasureTheory.IsFiniteMeasure μ]
(m : E)
(f : ContinuousBilinForm ℝ E)
(hf : f.IsPosSemidef)
(h : ∀ (t : E), MeasureTheory.charFun μ t = Complex.exp (↑(inner ℝ t m) * Complex.I - ↑((f t) t) / 2))
:
If the characteristic function of μ
takes the form of a gaussian characteristic function,
then the parameters have to be the expectation and the covariance bilinear form.
theorem
ProbabilityTheory.IsGaussian.ext
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
{ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
(hm : ∫ (x : E), id x ∂μ = ∫ (x : E), id x ∂ν)
(hv : covInnerBilin μ = covInnerBilin ν)
:
Two Gaussian measures are equal if they have same mean and same covariance. This is
IsGaussian.ext_covarianceBilin
specialized to Hilbert spaces.
theorem
ProbabilityTheory.IsGaussian.ext_iff
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
{ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
:
Two Gaussian measures are equal if and only if they have same mean and same covariance. This is
IsGaussian.ext_iff_covarianceBilin
specialized to Hilbert spaces.
theorem
ProbabilityTheory.IsGaussian.ext_covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
(hm : ∫ (x : E), id x ∂μ = ∫ (x : E), id x ∂ν)
(hv : covarianceBilin μ = covarianceBilin ν)
:
Two Gaussian measures are equal if they have same mean and same covariance.
theorem
ProbabilityTheory.IsGaussian.ext_iff_covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
:
Two Gaussian measures are equal if and only if they have same mean and same covariance.