Facts about Gaussian characteristic function #
theorem
ProbabilityTheory.HasGaussianLaw.map_eq_gaussianReal
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(h : HasGaussianLaw X P)
:
theorem
ProbabilityTheory.HasGaussianLaw.charFun_map_real
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(h : HasGaussianLaw X P)
(t : ℝ)
:
MeasureTheory.charFun (MeasureTheory.Measure.map X P) t = Complex.exp ((↑t * ∫ (x : Ω), ↑(X x) ∂P) * Complex.I - ↑t ^ 2 * ↑(variance X P) / 2)