Facts about Gaussian characteristic function #
theorem
ProbabilityTheory.isGaussian_iff_charFun_eq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.IsFiniteMeasure μ]
:
theorem
ProbabilityTheory.IsGaussian.charFun_eq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[IsGaussian μ]
(t : E)
:
MeasureTheory.charFun μ t = Complex.exp (↑(inner ℝ t (∫ (x : E), id x ∂μ)) * Complex.I - ↑(((covInnerBilin μ) t) t) / 2)
theorem
ProbabilityTheory.HasGaussianLaw.charFun_toLp
{ι : Type u_2}
{Ω : Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure P]
{X : ι → Ω → ℝ}
[hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P]
(ξ : EuclideanSpace ℝ ι)
:
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) P) ξ = Complex.exp
(∑ i : ι, (↑(ξ i) * ∫ (x : Ω), ↑(X i x) ∂P) * Complex.I - ∑ i : ι, ∑ j : ι, ↑(ξ i) * ↑(ξ j) * (↑(covariance (X i) (X j) P) / 2))
theorem
ProbabilityTheory.isGaussian_iff_gaussian_charFun
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[MeasureTheory.IsFiniteMeasure μ]
:
IsGaussian μ ↔ ∃ (m : E) (f : ContinuousBilinForm ℝ E),
f.IsPosSemidef ∧ ∀ (t : E), MeasureTheory.charFun μ t = Complex.exp (↑(inner ℝ t m) * Complex.I - ↑((f t) t) / 2)
theorem
ProbabilityTheory.gaussian_charFun_congr
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[MeasureTheory.IsFiniteMeasure μ]
(m : E)
(f : ContinuousBilinForm ℝ E)
(hf : f.IsPosSemidef)
(h : ∀ (t : E), MeasureTheory.charFun μ t = Complex.exp (↑(inner ℝ t m) * Complex.I - ↑((f t) t) / 2))
:
If the characteristic function of μ
takes the form of a gaussian characteristic function,
then the parameters have to be the expectation and the covariance bilinear form.
theorem
ProbabilityTheory.IsGaussian.ext
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
{ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
(hm : ∫ (x : E), id x ∂μ = ∫ (x : E), id x ∂ν)
(hv : covInnerBilin μ = covInnerBilin ν)
:
Two Gaussian measures are equal if they have same mean and same covariance. This is
IsGaussian.ext_covarianceBilin
specialized to Hilbert spaces.
theorem
ProbabilityTheory.IsGaussian.ext_iff
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
{ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
:
Two Gaussian measures are equal if and only if they have same mean and same covariance. This is
IsGaussian.ext_iff_covarianceBilin
specialized to Hilbert spaces.
theorem
ProbabilityTheory.IsGaussian.ext_covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
(hm : ∫ (x : E), id x ∂μ = ∫ (x : E), id x ∂ν)
(hv : covarianceBilin μ = covarianceBilin ν)
:
Two Gaussian measures are equal if they have same mean and same covariance.
theorem
ProbabilityTheory.IsGaussian.ext_iff_covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ ν : MeasureTheory.Measure E}
[IsGaussian μ]
[IsGaussian ν]
:
Two Gaussian measures are equal if and only if they have same mean and same covariance.
theorem
ProbabilityTheory.HasGaussianLaw.map_eq_gaussianReal
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
[HasGaussianLaw X P]
:
theorem
ProbabilityTheory.HasGaussianLaw.charFun_map_real
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
[HasGaussianLaw X P]
(t : ℝ)
:
MeasureTheory.charFun (MeasureTheory.Measure.map X P) t = Complex.exp ((↑t * ∫ (x : Ω), ↑(X x) ∂P) * Complex.I - ↑t ^ 2 * ↑(variance X P) / 2)