Documentation

BrownianMotion.Gaussian.Gaussian

Facts about Gaussian characteristic function #

theorem ProbabilityTheory.HasGaussianLaw.charFun_toLp {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {X : ιΩ} [hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (ξ : EuclideanSpace ι) :
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) P) ξ = Complex.exp (i : ι, ((ξ i) * (x : Ω), (X i x) P) * Complex.I - i : ι, j : ι, (ξ i) * (ξ j) * ((covariance (X i) (X j) P) / 2))

If the characteristic function of μ takes the form of a gaussian characteristic function, then the parameters have to be the expectation and the covariance bilinear form.

Two Gaussian measures are equal if they have same mean and same covariance. This is IsGaussian.ext_covarianceBilin specialized to Hilbert spaces.

Two Gaussian measures are equal if and only if they have same mean and same covariance. This is IsGaussian.ext_iff_covarianceBilin specialized to Hilbert spaces.

Two Gaussian measures are equal if they have same mean and same covariance.

Two Gaussian measures are equal if and only if they have same mean and same covariance.

theorem ProbabilityTheory.HasGaussianLaw.charFun_map_real {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : Ω} [HasGaussianLaw X P] (t : ) :
MeasureTheory.charFun (MeasureTheory.Measure.map X P) t = Complex.exp ((t * (x : Ω), (X x) P) * Complex.I - t ^ 2 * (variance X P) / 2)