Documentation

BrownianMotion.Auxiliary.HasGaussianLaw

theorem ProbabilityTheory.HasGaussianLaw.charFun_toLp_pi {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} [hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (ξ : EuclideanSpace ι) :
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) P) ξ = Complex.exp (i : ι, ((ξ i) * (x : Ω), (X i x) P) * Complex.I - i : ι, j : ι, (ξ i) * (ξ j) * ((covariance (X i) (X j) P) / 2))
theorem ProbabilityTheory.HasGaussianLaw.charFun_toLp_prodMk {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} [hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P] (ξ : WithLp 2 ( × )) :
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 (X ω, Y ω)) P) ξ = Complex.exp ((ξ.1 * (x : Ω), (X x) P + ξ.2 * (x : Ω), (Y x) P) * Complex.I - (ξ.1 ^ 2 * (variance X P) + 2 * ξ.1 * ξ.2 * (covariance X Y P) + ξ.2 ^ 2 * (variance Y P)) / 2)
theorem ProbabilityTheory.iIndepFun.hasGaussianLaw {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} (h : ∀ (i : ι), HasGaussianLaw (X i) P) (hX : iIndepFun X P) :
HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P
theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_cov {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} (h : HasGaussianLaw (fun (ω : Ω) (i : ι) => X i ω) P) (h' : ∀ (i j : ι), i j∀ (L₁ : StrongDual (E i)) (L₂ : StrongDual (E j)), covariance (L₁ X i) (L₂ X j) P = 0) :
theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_cov {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [CompleteSpace E] [BorelSpace E] [SecondCountableTopology E] [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [CompleteSpace F] [BorelSpace F] [SecondCountableTopology F] {X : ΩE} {Y : ΩF} (h : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) (h' : ∀ (L₁ : StrongDual E) (L₂ : StrongDual F), covariance (L₁ X) (L₂ Y) P = 0) :
IndepFun X Y P
theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_cov' {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} (h : HasGaussianLaw (fun (ω : Ω) (i : ι) => X i ω) P) (h' : ∀ (i j : ι), i j∀ (x : E i) (y : E j), covariance (fun (ω : Ω) => inner x (X i ω)) (fun (ω : Ω) => inner y (X j ω)) P = 0) :
theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_cov' {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [InnerProductSpace E] [MeasurableSpace E] [CompleteSpace E] [BorelSpace E] [SecondCountableTopology E] [NormedAddCommGroup F] [InnerProductSpace F] [MeasurableSpace F] [CompleteSpace F] [BorelSpace F] [SecondCountableTopology F] {X : ΩE} {Y : ΩF} (h : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) (h' : ∀ (x : E) (y : F), covariance (fun (ω : Ω) => inner x (X ω)) (fun (ω : Ω) => inner y (Y ω)) P = 0) :
IndepFun X Y P
theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_cov'' {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {κ : ιType u_3} [(i : ι) → Fintype (κ i)] {X : (i : ι) → κ iΩ} (h : HasGaussianLaw (fun (ω : Ω) (i : ι) (j : κ i) => X i j ω) P) (h' : ∀ (i j : ι), i j∀ (k : κ i) (l : κ j), covariance (X i k) (X j l) P = 0) :
iIndepFun (fun (i : ι) (ω : Ω) (j : κ i) => X i j ω) P
theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_eq_zero {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩ} [h1 : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (h2 : ∀ (i j : ι), i jcovariance (X i) (X j) P = 0) :
theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_cov'' {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {κ : Type u_3} [Fintype κ] {X : ιΩ} {Y : κΩ} (h : HasGaussianLaw (fun (ω : Ω) => (fun (i : ι) => X i ω, fun (j : κ) => Y j ω)) P) (h' : ∀ (i : ι) (j : κ), covariance (X i) (Y j) P = 0) :
IndepFun (fun (ω : Ω) (i : ι) => X i ω) (fun (ω : Ω) (j : κ) => Y j ω) P
theorem ProbabilityTheory.HasGaussianLaw.indepFun_of_covariance_eq_zero {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} [h1 : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P] (h2 : covariance X Y P = 0) :
IndepFun X Y P
theorem ProbabilityTheory.IndepFun.hasLaw_sub_of_gaussian {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} {μX μY : } {vX vY : NNReal} (hX : HasLaw X (gaussianReal μX vX) P) (hY : HasLaw Y (gaussianReal μY vY) P) (h1 : IndepFun X (Y - X) P) (h2 : vX vY) :
HasLaw (Y - X) (gaussianReal (μY - μX) (vY - vX)) P
theorem ProbabilityTheory.IndepFun.hasLaw_gaussianReal_of_add {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} {μX μY : } {vX vY : NNReal} (hX : HasLaw X (gaussianReal μX vX) P) (hY : HasLaw (X + Y) (gaussianReal μY vY) P) (h : IndepFun X Y P) :
HasLaw Y (gaussianReal (μY - μX) (vY - vX)) P
theorem ProbabilityTheory.IndepFun.hasGaussianLaw_of_add_real {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} (hX : HasGaussianLaw X P) (hY : HasGaussianLaw (X + Y) P) (h : IndepFun X Y P) :