Documentation

BrownianMotion.Auxiliary.HasGaussianLaw

theorem ProbabilityTheory.HasGaussianLaw.charFun_toLp_pi {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [Fintype ι] {X : ιΩ} (hX : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P) (ξ : EuclideanSpace ι) :
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) P) ξ = Complex.exp (i : ι, ((ξ.ofLp i) * (x : Ω), (X i x) P) * Complex.I - i : ι, j : ι, (ξ.ofLp i) * (ξ.ofLp j) * ((covariance (X i) (X j) P) / 2))
theorem ProbabilityTheory.HasGaussianLaw.charFun_toLp_prodMk {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} (hXY : HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P) (ξ : WithLp 2 ( × )) :
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 (X ω, Y ω)) P) ξ = Complex.exp ((ξ.fst * (x : Ω), (X x) P + ξ.snd * (x : Ω), (Y x) P) * Complex.I - (ξ.fst ^ 2 * (variance X P) + 2 * ξ.fst * ξ.snd * (covariance X Y P) + ξ.snd ^ 2 * (variance Y P)) / 2)
theorem ProbabilityTheory.IndepFun.hasLaw_sub_of_gaussian {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} {μX μY : } {vX vY : NNReal} (hX : HasLaw X (gaussianReal μX vX) P) (hY : HasLaw Y (gaussianReal μY vY) P) (h1 : IndepFun X (Y - X) P) (h2 : vX vY) :
HasLaw (Y - X) (gaussianReal (μY - μX) (vY - vX)) P
theorem ProbabilityTheory.IndepFun.hasLaw_gaussianReal_of_add {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} {μX μY : } {vX vY : NNReal} (hX : HasLaw X (gaussianReal μX vX) P) (hY : HasLaw (X + Y) (gaussianReal μY vY) P) (h : IndepFun X Y P) :
HasLaw Y (gaussianReal (μY - μX) (vY - vX)) P
theorem ProbabilityTheory.IndepFun.hasGaussianLaw_of_add_real {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : Ω} (hX : HasGaussianLaw X P) (hY : HasGaussianLaw (X + Y) P) (h : IndepFun X Y P) :