Documentation

BrownianMotion.Auxiliary.Analysis

theorem convexOn_subsingleton {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [Semiring 𝕜] [PartialOrder 𝕜] [AddCommMonoid E] [Subsingleton E] [AddCommMonoid β] [PartialOrder β] [SMul 𝕜 E] [Module 𝕜 β] (s : Set E) (f : Eβ) :
ConvexOn 𝕜 s f
theorem convexOn_rpow_norm {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] {p : } (hp : 1 p) :
ConvexOn Set.univ fun (x : E) => x ^ p