theorem
convexOn_subsingleton
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[Semiring 𝕜]
[PartialOrder 𝕜]
[AddCommMonoid E]
[Subsingleton E]
[AddCommMonoid β]
[PartialOrder β]
[SMul 𝕜 E]
[Module 𝕜 β]
(s : Set E)
(f : E → β)
:
ConvexOn 𝕜 s f
theorem
convexOn_rpow_norm
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
{p : ℝ}
(hp : 1 ≤ p)
: