Documentation

TestingLowerBounds.Testing.RenyiChangeMeasure

Change of measure inequalities involving Rényi divergences #

Main definitions #

Main statements #

theorem ProbabilityTheory.measure_llr_gt_renyiDiv_le_exp {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] {a : } (ha : 0 < a) (c : ) (h : ProbabilityTheory.renyiDiv (1 + a) μ ν ) :
(μ {x : α | (ProbabilityTheory.renyiDiv (1 + a) μ ν).toReal + c < MeasureTheory.llr μ ν x}).toReal Real.exp (-a * c)
theorem ProbabilityTheory.measure_sub_le_measure_mul_exp_renyiDiv {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (s : Set α) {a : } (ha : 0 < a) (c : ) (h : ProbabilityTheory.renyiDiv (1 + a) μ ν ) :
(μ s).toReal - Real.exp (-a * c) (ν s).toReal * Real.exp ((ProbabilityTheory.renyiDiv (1 + a) μ ν).toReal + c)
theorem ProbabilityTheory.one_sub_exp_le_add_measure_mul_exp_max_renyiDiv {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {ν' : MeasureTheory.Measure α} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.IsFiniteMeasure ν'] (s : Set α) {a : } (ha : 0 < a) (c : ) (hν : ProbabilityTheory.renyiDiv (1 + a) μ ν ) (hν' : ProbabilityTheory.renyiDiv (1 + a) μ ν' ) :
1 - 2 * Real.exp (-a * c) ((ν s).toReal + (ν' s).toReal) * Real.exp (max (ProbabilityTheory.renyiDiv (1 + a) μ ν).toReal (ProbabilityTheory.renyiDiv (1 + a) μ ν').toReal + c)