Change of measure inequalities involving Rényi divergences #
Main definitions #
FooBar
Main statements #
fooBar_unique
theorem
ProbabilityTheory.measure_llr_gt_renyiDiv_le_exp
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
{a : ℝ}
(ha : 0 < a)
(c : ℝ)
(h : ProbabilityTheory.renyiDiv (1 + a) μ ν ≠ ⊤)
:
(μ {x : α | (ProbabilityTheory.renyiDiv (1 + a) μ ν).toReal + c < MeasureTheory.llr μ ν x}).toReal ≤ Real.exp (-a * c)
theorem
ProbabilityTheory.measure_sub_le_measure_mul_exp_renyiDiv
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(s : Set α)
{a : ℝ}
(ha : 0 < a)
(c : ℝ)
(h : ProbabilityTheory.renyiDiv (1 + a) μ ν ≠ ⊤)
:
theorem
ProbabilityTheory.one_sub_exp_le_add_measure_mul_exp_max_renyiDiv
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
{ν' : MeasureTheory.Measure α}
[MeasureTheory.IsProbabilityMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure ν']
(s : Set α)
{a : ℝ}
(ha : 0 < a)
(c : ℝ)
(hν : ProbabilityTheory.renyiDiv (1 + a) μ ν ≠ ⊤)
(hν' : ProbabilityTheory.renyiDiv (1 + a) μ ν' ≠ ⊤)
:
theorem
ProbabilityTheory.exp_neg_max_renyiDiv_le_add_measure
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
{ν' : MeasureTheory.Measure α}
[MeasureTheory.IsProbabilityMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure ν']
(s : Set α)
{a : ℝ}
(ha : 0 < a)
(hν : ProbabilityTheory.renyiDiv (1 + a) μ ν ≠ ⊤)
(hν' : ProbabilityTheory.renyiDiv (1 + a) μ ν' ≠ ⊤)
: