Change of measure inequalities #
Main definitions #
FooBar
Main statements #
fooBar_unique
TODO #
The lemma names in this file are bad.
theorem
ProbabilityTheory.setLIntegral_nnnorm_exp_neg_llr_le
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite ν]
[MeasureTheory.SigmaFinite μ]
(hμν : μ.AbsolutelyContinuous ν)
(s : Set α)
:
theorem
ProbabilityTheory.integrableOn_exp_neg_llr
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
{s : Set α}
[MeasureTheory.SigmaFinite ν]
[MeasureTheory.SigmaFinite μ]
(hμν : μ.AbsolutelyContinuous ν)
(hνs : ν s ≠ ⊤)
:
MeasureTheory.IntegrableOn (fun (x : α) => Real.exp (-MeasureTheory.llr μ ν x)) s μ
theorem
ProbabilityTheory.setIntegral_exp_neg_llr_le
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
{s : Set α}
[MeasureTheory.SigmaFinite ν]
[MeasureTheory.SigmaFinite μ]
(hμν : μ.AbsolutelyContinuous ν)
(hνs : ν s ≠ ⊤)
:
∫ (x : α) in s, Real.exp (-MeasureTheory.llr μ ν x) ∂μ ≤ (ν s).toReal
theorem
ProbabilityTheory.measure_sub_le_measure_mul_exp
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.IsFiniteMeasure ν]
(hμν : μ.AbsolutelyContinuous ν)
(s : Set α)
(c : ℝ)
(hμc : μ {x : α | c < MeasureTheory.llr μ ν x} ≠ ⊤)
:
theorem
ProbabilityTheory.measure_sub_le_measure_mul_exp'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(hμν : μ.AbsolutelyContinuous ν)
(s : Set α)
(c : ℝ)
(hμc : μ {x : α | c < MeasureTheory.llr μ ν x} ≠ ⊤)
:
μ s - μ {x : α | c < MeasureTheory.llr μ ν x} ≤ ν s * ENNReal.ofReal (Real.exp c)
theorem
ProbabilityTheory.one_sub_le_add_measure_mul_exp
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
{ν' : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure ν']
[MeasureTheory.IsProbabilityMeasure μ]
(hμν : μ.AbsolutelyContinuous ν)
(hμν' : μ.AbsolutelyContinuous ν')
(s : Set α)
(c : ℝ)
(c' : ℝ)
:
theorem
ProbabilityTheory.one_sub_le_add_measure_mul_exp'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
{ν' : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure ν']
[MeasureTheory.IsProbabilityMeasure μ]
(hμν : μ.AbsolutelyContinuous ν)
(hμν' : μ.AbsolutelyContinuous ν')
(s : Set α)
(c : ℝ)
(c' : ℝ)
: