Documentation

TestingLowerBounds.Testing.ChangeMeasure

Change of measure inequalities #

Main definitions #

Main statements #

TODO #

The lemma names in this file are bad.

theorem ProbabilityTheory.setLIntegral_nnnorm_exp_neg_llr_le {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite ν] [MeasureTheory.SigmaFinite μ] (hμν : μ.AbsolutelyContinuous ν) (s : Set α) :
∫⁻ (a : α) in s, Real.exp (-MeasureTheory.llr μ ν a)‖₊μ ν s
theorem ProbabilityTheory.integrableOn_exp_neg_llr {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {s : Set α} [MeasureTheory.SigmaFinite ν] [MeasureTheory.SigmaFinite μ] (hμν : μ.AbsolutelyContinuous ν) (hνs : ν s ) :
MeasureTheory.IntegrableOn (fun (x : α) => Real.exp (-MeasureTheory.llr μ ν x)) s μ
theorem ProbabilityTheory.setIntegral_exp_neg_llr_le {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {s : Set α} [MeasureTheory.SigmaFinite ν] [MeasureTheory.SigmaFinite μ] (hμν : μ.AbsolutelyContinuous ν) (hνs : ν s ) :
∫ (x : α) in s, Real.exp (-MeasureTheory.llr μ ν x)μ (ν s).toReal
theorem ProbabilityTheory.measure_sub_le_measure_mul_exp {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) (s : Set α) (c : ) (hμc : μ {x : α | c < MeasureTheory.llr μ ν x} ) :
(μ s).toReal - (μ {x : α | c < MeasureTheory.llr μ ν x}).toReal (ν s).toReal * Real.exp c
theorem ProbabilityTheory.measure_sub_le_measure_mul_exp' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) (s : Set α) (c : ) (hμc : μ {x : α | c < MeasureTheory.llr μ ν x} ) :
μ s - μ {x : α | c < MeasureTheory.llr μ ν x} ν s * ENNReal.ofReal (Real.exp c)
theorem ProbabilityTheory.one_sub_le_add_measure_mul_exp {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {ν' : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.IsFiniteMeasure ν'] [MeasureTheory.IsProbabilityMeasure μ] (hμν : μ.AbsolutelyContinuous ν) (hμν' : μ.AbsolutelyContinuous ν') (s : Set α) (c : ) (c' : ) :
1 - (μ {x : α | c < MeasureTheory.llr μ ν x}).toReal - (μ {x : α | c' < MeasureTheory.llr μ ν' x}).toReal (ν s).toReal * Real.exp c + (ν' s).toReal * Real.exp c'
theorem ProbabilityTheory.one_sub_le_add_measure_mul_exp' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {ν' : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.IsFiniteMeasure ν'] [MeasureTheory.IsProbabilityMeasure μ] (hμν : μ.AbsolutelyContinuous ν) (hμν' : μ.AbsolutelyContinuous ν') (s : Set α) (c : ) (c' : ) :
1 - (μ {x : α | c < MeasureTheory.llr μ ν x}).toReal - (μ {x : α | c' < MeasureTheory.llr μ ν' x}).toReal ((ν s).toReal + (ν' s).toReal) * Real.exp (max c c')