Documentation

TestingLowerBounds.Kernel.DeterministicComp

Composition-related properties of basic deterministic kernels #

@[simp]
theorem ProbabilityTheory.Kernel.comp_id {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} :
κ.comp ProbabilityTheory.Kernel.id = κ
@[simp]
theorem ProbabilityTheory.Kernel.id_comp {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} :
ProbabilityTheory.Kernel.id.comp κ = κ
theorem ProbabilityTheory.Kernel.compProd_prodMkLeft_eq_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsSFiniteKernel κ] (η : ProbabilityTheory.Kernel β γ) [ProbabilityTheory.IsSFiniteKernel η] :
κ.compProd (ProbabilityTheory.Kernel.prodMkLeft α η) = (ProbabilityTheory.Kernel.id.prod η).comp κ
@[simp]
theorem ProbabilityTheory.Kernel.swap_swap {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} :
(ProbabilityTheory.Kernel.swap α β).comp (ProbabilityTheory.Kernel.swap β α) = ProbabilityTheory.Kernel.id
theorem ProbabilityTheory.Kernel.swap_comp_eq_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : ProbabilityTheory.Kernel α (β × γ)} :
(ProbabilityTheory.Kernel.swap β γ).comp κ = κ.map Prod.swap