Documentation

TestingLowerBounds.ForMathlib.AbsolutelyContinuous

Radon-Nikodym derivative and Lebesgue decomposition for kernels #

theorem MeasureTheory.Measure.absolutelyContinuous_compProd_left_iff {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] :
(μ.compProd κ).AbsolutelyContinuous (ν.compProd κ) μ.AbsolutelyContinuous ν
theorem MeasureTheory.Measure.mutuallySingular_compProd_left {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} (hμν : μ.MutuallySingular ν) (κ : ProbabilityTheory.Kernel α γ) (η : ProbabilityTheory.Kernel α γ) :
(μ.compProd κ).MutuallySingular (ν.compProd η)
theorem MeasureTheory.Measure.mutuallySingular_of_mutuallySingular_compProd {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} {ξ : MeasureTheory.Measure α} [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] (h : (μ.compProd κ).MutuallySingular (ν.compProd η)) (hμ : ξ.AbsolutelyContinuous μ) (hν : ξ.AbsolutelyContinuous ν) :
∀ᵐ (x : α) ∂ξ, (κ x).MutuallySingular (η x)
theorem MeasureTheory.Measure.mutuallySingular_compProd_iff_of_same_right {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [hκ : ∀ (x : α), NeZero (κ x)] :
(μ.compProd κ).MutuallySingular (ν.compProd κ) μ.MutuallySingular ν
theorem MeasureTheory.Measure.absolutelyContinuous_of_add_of_mutuallySingular {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν₁ : MeasureTheory.Measure α} {ν₂ : MeasureTheory.Measure α} (h_ms : μ.MutuallySingular ν₂) (h : μ.AbsolutelyContinuous (ν₁ + ν₂)) :
μ.AbsolutelyContinuous ν₁
theorem MeasureTheory.Measure.absolutelyContinuous_compProd_of_compProd {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [MeasureTheory.SFinite ν] [ProbabilityTheory.IsSFiniteKernel η] (hμν : μ.AbsolutelyContinuous ν) (hκη : (μ.compProd κ).AbsolutelyContinuous (μ.compProd η)) :
(μ.compProd κ).AbsolutelyContinuous (ν.compProd η)
theorem MeasureTheory.Measure.absolutelyContinuous_compProd_of_compProd' {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] (hκη : (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)) :
(μ.compProd κ).AbsolutelyContinuous (μ.compProd η)
theorem MeasureTheory.Measure.absolutelyContinuous_compProd_iff' {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] [∀ (x : α), NeZero (κ x)] :
(μ.compProd κ).AbsolutelyContinuous (ν.compProd η) μ.AbsolutelyContinuous ν (μ.compProd κ).AbsolutelyContinuous (μ.compProd η)
theorem MeasureTheory.Measure.mutuallySingular_compProd_right {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [MeasurableSpace.CountableOrCountablyGenerated α γ] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hκη : ∀ᵐ (a : α) ∂μ, (κ a).MutuallySingular (η a)) :
(μ.compProd κ).MutuallySingular (ν.compProd η)
theorem MeasureTheory.Measure.mutuallySingular_compProd_right' {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [MeasurableSpace.CountableOrCountablyGenerated α γ] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hκη : ∀ᵐ (a : α) ∂ν, (κ a).MutuallySingular (η a)) :
(μ.compProd κ).MutuallySingular (ν.compProd η)
theorem MeasureTheory.Measure.mutuallySingular_compProd_iff_of_same_left {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [MeasurableSpace.CountableOrCountablyGenerated α γ] (μ : MeasureTheory.Measure α) [MeasureTheory.SFinite μ] (κ : ProbabilityTheory.Kernel α γ) (η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd κ).MutuallySingular (μ.compProd η) ∀ᵐ (a : α) ∂μ, (κ a).MutuallySingular (η a)
theorem MeasureTheory.Measure.absolutelyContinuous_kernel_of_compProd {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [MeasurableSpace.CountableOrCountablyGenerated α γ] [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h : (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)) :
∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)
theorem MeasureTheory.Measure.absolutelyContinuous_compProd_iff {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [MeasurableSpace.CountableOrCountablyGenerated α γ] [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] [∀ (a : α), NeZero (κ a)] :
(μ.compProd κ).AbsolutelyContinuous (ν.compProd η) μ.AbsolutelyContinuous ν ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)
theorem MeasureTheory.Measure.absolutelyContinuous_compProd_right_iff {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [MeasurableSpace.CountableOrCountablyGenerated α γ] {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α γ} {η : ProbabilityTheory.Kernel α γ} [MeasureTheory.SFinite μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd κ).AbsolutelyContinuous (μ.compProd η) ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)
theorem ProbabilityTheory.Kernel.absolutelyContinuous_compProd_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} :
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace γ} [inst : MeasurableSpace.CountableOrCountablyGenerated β γ] {κ₁ η₁ : ProbabilityTheory.Kernel α β} {κ₂ η₂ : ProbabilityTheory.Kernel (α × β) γ} [inst : ProbabilityTheory.IsSFiniteKernel κ₁] [inst : ProbabilityTheory.IsSFiniteKernel η₁] [inst : ProbabilityTheory.IsFiniteKernel κ₂] [inst : ProbabilityTheory.IsFiniteKernel η₂] (a : α) [inst : ∀ (b : β), NeZero (κ₂ (a, b))], ((κ₁.compProd κ₂) a).AbsolutelyContinuous ((η₁.compProd η₂) a) (κ₁ a).AbsolutelyContinuous (η₁ a) ∀ᵐ (b : β) ∂κ₁ a, (κ₂ (a, b)).AbsolutelyContinuous (η₂ (a, b))