Documentation

TestingLowerBounds.ForMathlib.LogLikelihoodRatioCompProd

theorem ProbabilityTheory.integrable_rnDeriv_mul_log_iff {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] (hμν : μ.AbsolutelyContinuous ν) :
MeasureTheory.Integrable (fun (a : α) => (μ.rnDeriv ν a).toReal * Real.log (μ.rnDeriv ν a).toReal) ν MeasureTheory.Integrable (MeasureTheory.llr μ ν) μ
theorem ProbabilityTheory.integrable_llr_compProd_of_integrable_llr {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} [MeasurableSpace.CountableOrCountablyGenerated α β] [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (h_ac : (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)) (hμν : MeasureTheory.Integrable (MeasureTheory.llr μ ν) μ) (hκη_int : MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), MeasureTheory.llr (κ a) (η a) bκ a) μ) (hκη_ae : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (MeasureTheory.llr (κ a) (η a)) (κ a)) :
MeasureTheory.Integrable (MeasureTheory.llr (μ.compProd κ) (ν.compProd η)) (μ.compProd κ)
theorem ProbabilityTheory.ae_integrable_llr_of_integrable_llr_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} [MeasurableSpace.CountableOrCountablyGenerated α β] [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (h_ac : (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)) (h_int : MeasureTheory.Integrable (MeasureTheory.llr (μ.compProd κ) (ν.compProd η)) (μ.compProd κ)) :
∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (MeasureTheory.llr (κ a) (η a)) (κ a)
theorem ProbabilityTheory.integrable_integral_llr_of_integrable_llr_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} [MeasurableSpace.CountableOrCountablyGenerated α β] [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (h_ac : (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)) (h_int : MeasureTheory.Integrable (MeasureTheory.llr (μ.compProd κ) (ν.compProd η)) (μ.compProd κ)) :
MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), MeasureTheory.llr (κ a) (η a) bκ a) μ
theorem ProbabilityTheory.integrable_llr_compProd_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} [MeasurableSpace.CountableOrCountablyGenerated α β] [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (h_ac : (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)) :
MeasureTheory.Integrable (MeasureTheory.llr (μ.compProd κ) (ν.compProd η)) (μ.compProd κ) (MeasureTheory.Integrable (MeasureTheory.llr μ ν) μ MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), MeasureTheory.llr (κ a) (η a) bκ a) μ) ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (MeasureTheory.llr (κ a) (η a)) (κ a)
theorem ProbabilityTheory.Kernel.integrable_llr_compProd_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} [MeasurableSpace.CountableOrCountablyGenerated β γ] {κ₁ : ProbabilityTheory.Kernel α β} {η₁ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsFiniteKernel κ₁] [ProbabilityTheory.IsFiniteKernel η₁] {κ₂ : ProbabilityTheory.Kernel (α × β) γ} {η₂ : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsMarkovKernel κ₂] [ProbabilityTheory.IsMarkovKernel η₂] (a : α) (h_ac : ((κ₁.compProd κ₂) a).AbsolutelyContinuous ((η₁.compProd η₂) a)) :
MeasureTheory.Integrable (MeasureTheory.llr ((κ₁.compProd κ₂) a) ((η₁.compProd η₂) a)) ((κ₁.compProd κ₂) a) MeasureTheory.Integrable (MeasureTheory.llr (κ₁ a) (η₁ a)) (κ₁ a) MeasureTheory.Integrable (fun (b : β) => ∫ (x : γ), MeasureTheory.llr (κ₂ (a, b)) (η₂ (a, b)) xκ₂ (a, b)) (κ₁ a) ∀ᵐ (b : β) ∂κ₁ a, MeasureTheory.Integrable (MeasureTheory.llr (κ₂ (a, b)) (η₂ (a, b))) (κ₂ (a, b))
theorem ProbabilityTheory.ae_compProd_integrable_llr_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} [MeasurableSpace.CountableOrCountablyGenerated (α × β) γ] [MeasureTheory.SFinite μ] {ξ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsSFiniteKernel ξ] {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_ac : ∀ᵐ (x : α × β) ∂μ.compProd ξ, (κ x).AbsolutelyContinuous (η x)) :
(∀ᵐ (x : α × β) ∂μ.compProd ξ, MeasureTheory.Integrable (MeasureTheory.llr (κ x) (η x)) (κ x)) ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, MeasureTheory.Integrable (MeasureTheory.llr (κ (a, b)) (η (a, b))) (κ (a, b))