Documentation

TestingLowerBounds.ForMathlib.KernelFstSnd

noncomputable def ProbabilityTheory.Kernel.fst' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) (b : β) :

Define a Kernel α γ from a Kernel (α × β) γ by taking the comap of fun a ↦ (a, b) for a given b : β.

Equations
  • κ.fst' b = κ.comap (fun (a : α) => (a, b))
Instances For
    @[simp]
    theorem ProbabilityTheory.Kernel.fst'_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) (b : β) (a : α) :
    (κ.fst' b) a = κ (a, b)
    @[simp]
    theorem ProbabilityTheory.Kernel.fst'_zero {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (b : β) :
    Equations
    • =
    Equations
    • =
    Equations
    • =
    instance ProbabilityTheory.Kernel.instNeZeroMeasureCoeFst'OfProdMk {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) (a : α) (b : β) [NeZero (κ (a, b))] :
    NeZero ((κ.fst' b) a)
    Equations
    • =
    @[instance 100]
    instance ProbabilityTheory.Kernel.instIsMarkovKernelProdOfFst' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : ProbabilityTheory.Kernel (α × β) γ} [∀ (b : β), ProbabilityTheory.IsMarkovKernel (κ.fst' b)] :
    Equations
    • =
    theorem ProbabilityTheory.Kernel.comap_fst' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {δ : Type u_5} {mδ : MeasurableSpace δ} (κ : ProbabilityTheory.Kernel (α × β) γ) (b : β) {f : δα} (hf : Measurable f) :
    (κ.fst' b).comap f hf = κ.comap (fun (d : δ) => (f d, b))
    @[simp]
    theorem ProbabilityTheory.Kernel.fst'_prodMkLeft {β : Type u_2} {γ : Type u_3} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (α : Type u_6) [MeasurableSpace α] (κ : ProbabilityTheory.Kernel β γ) (a : α) {b : β} :
    ((ProbabilityTheory.Kernel.prodMkLeft α κ).fst' b) a = κ b
    @[simp]
    theorem ProbabilityTheory.Kernel.fst'_prodMkRight {α : Type u_1} {γ : Type u_3} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} (β : Type u_6) [MeasurableSpace β] (κ : ProbabilityTheory.Kernel α γ) (b : β) :
    noncomputable def ProbabilityTheory.Kernel.snd' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) (a : α) :

    Define a Kernel β γ from a Kernel (α × β) γ by taking the comap of fun b ↦ (a, b) for a given a : α.

    Equations
    • κ.snd' a = κ.comap (fun (b : β) => (a, b))
    Instances For
      @[simp]
      theorem ProbabilityTheory.Kernel.snd'_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) (b : β) (a : α) :
      (κ.snd' a) b = κ (a, b)
      @[simp]
      theorem ProbabilityTheory.Kernel.snd'_zero {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (a : α) :
      Equations
      • =
      Equations
      • =
      Equations
      • =
      instance ProbabilityTheory.Kernel.instNeZeroMeasureCoeSnd'OfProdMk {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) (a : α) (b : β) [NeZero (κ (a, b))] :
      NeZero ((κ.snd' a) b)
      Equations
      • =
      @[instance 100]
      instance ProbabilityTheory.Kernel.instIsMarkovKernelProdOfSnd' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : ProbabilityTheory.Kernel (α × β) γ} [∀ (b : α), ProbabilityTheory.IsMarkovKernel (κ.snd' b)] :
      Equations
      • =
      theorem ProbabilityTheory.Kernel.comap_snd' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {δ : Type u_5} {mδ : MeasurableSpace δ} (κ : ProbabilityTheory.Kernel (α × β) γ) (a : α) {f : δβ} (hf : Measurable f) :
      (κ.snd' a).comap f hf = κ.comap (fun (d : δ) => (a, f d))
      @[simp]
      theorem ProbabilityTheory.Kernel.snd'_prodMkLeft {β : Type u_2} {γ : Type u_3} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (α : Type u_6) [MeasurableSpace α] (κ : ProbabilityTheory.Kernel β γ) (a : α) :
      @[simp]
      theorem ProbabilityTheory.Kernel.snd'_prodMkRight {α : Type u_1} {γ : Type u_3} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} (β : Type u_6) [MeasurableSpace β] (κ : ProbabilityTheory.Kernel α γ) (b : β) {a : α} :
      ((ProbabilityTheory.Kernel.prodMkRight β κ).snd' a) b = κ a
      @[simp]
      theorem ProbabilityTheory.Kernel.fst'_swapRight {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) :
      κ.swapLeft.fst' = κ.snd'
      @[simp]
      theorem ProbabilityTheory.Kernel.snd'_swapRight {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel (α × β) γ) :
      κ.swapLeft.snd' = κ.fst'
      theorem ProbabilityTheory.Kernel.compProd_apply_eq_compProd_snd' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel (α × β) γ) [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] (a : α) :
      (κ.compProd η) a = (κ a).compProd (η.snd' a)