Documentation

TestingLowerBounds.Divergences.TotalVariation

Total variation distance #

Main definitions #

Main statements #

Notation #

Implementation details #

References #

Tags #

Foobars, barfoos

noncomputable def ProbabilityTheory.tv {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) :

Total variation distance between two measures.

Equations
Instances For
    @[simp]
    theorem ProbabilityTheory.tv_zero_left {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {ν : MeasureTheory.Measure 𝒳} :
    @[simp]
    @[simp]
    theorem ProbabilityTheory.tv_self {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} :
    theorem ProbabilityTheory.tv_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] :
    ProbabilityTheory.tv μ ν min (μ Set.univ).toReal (ν Set.univ).toReal
    theorem ProbabilityTheory.tv_comp_le {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] :
    ProbabilityTheory.tv (μ.bind κ) (ν.bind κ) ProbabilityTheory.tv μ ν

    Data processing inequality for the total variation.