Total variation distance #
Main definitions #
FooBar
Main statements #
fooBar_unique
Notation #
Implementation details #
References #
- [F. Bar, Quuxes][bibkey]
Tags #
Foobars, barfoos
noncomputable def
ProbabilityTheory.tv
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
:
Total variation distance between two measures.
Equations
- ProbabilityTheory.tv μ ν = (ProbabilityTheory.statInfo μ ν (Bool.boolMeasure 1 1)).toReal
Instances For
@[simp]
theorem
ProbabilityTheory.tv_zero_left
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{ν : MeasureTheory.Measure 𝒳}
:
ProbabilityTheory.tv 0 ν = 0
@[simp]
theorem
ProbabilityTheory.tv_zero_right
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
:
ProbabilityTheory.tv μ 0 = 0
@[simp]
theorem
ProbabilityTheory.tv_self
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
:
ProbabilityTheory.tv μ μ = 0
theorem
ProbabilityTheory.tv_nonneg
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
:
0 ≤ ProbabilityTheory.tv μ ν
theorem
ProbabilityTheory.tv_le
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
:
ProbabilityTheory.tv μ ν ≤ min (μ Set.univ).toReal (ν Set.univ).toReal
theorem
ProbabilityTheory.tv_comp_le
{𝒳 : Type u_1}
{𝒳' : Type u_2}
{m𝒳 : MeasurableSpace 𝒳}
{m𝒳' : MeasurableSpace 𝒳'}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel 𝒳 𝒳')
[ProbabilityTheory.IsMarkovKernel κ]
:
ProbabilityTheory.tv (μ.bind ⇑κ) (ν.bind ⇑κ) ≤ ProbabilityTheory.tv μ ν
Data processing inequality for the total variation.