Documentation

TestingLowerBounds.Divergences.DeGroot

DeGroot statistical information #

Main definitions #

Main statements #

Notation #

Implementation details #

noncomputable def ProbabilityTheory.deGrootInfo {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) (p : ENNReal) (hp : p 1) :

The DeGroot statistical information between two measures, for prior Bernoulli p.

Equations
Instances For
    theorem ProbabilityTheory.deGrootInfo_comp_le {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) (p : ENNReal) (hp : p 1) (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel η] :
    ProbabilityTheory.deGrootInfo (μ.bind η) (ν.bind η) p hp ProbabilityTheory.deGrootInfo μ ν p hp

    Data processing inequality for the DeGroot statistical information.