DeGroot statistical information #
Main definitions #
Main statements #
Notation #
Implementation details #
noncomputable def
ProbabilityTheory.deGrootInfo
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(p : ENNReal)
(hp : p ≤ 1)
:
The DeGroot statistical information between two measures, for prior Bernoulli p
.
Equations
- ProbabilityTheory.deGrootInfo μ ν p hp = ProbabilityTheory.statInfo μ ν (PMF.bernoulli p hp).toMeasure
Instances For
theorem
ProbabilityTheory.deGrootInfo_comp_le
{𝒳 : Type u_1}
{𝒳' : Type u_2}
{m𝒳 : MeasurableSpace 𝒳}
{m𝒳' : MeasurableSpace 𝒳'}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(p : ENNReal)
(hp : p ≤ 1)
(η : ProbabilityTheory.Kernel 𝒳 𝒳')
[ProbabilityTheory.IsMarkovKernel η]
:
ProbabilityTheory.deGrootInfo (μ.bind ⇑η) (ν.bind ⇑η) p hp ≤ ProbabilityTheory.deGrootInfo μ ν p hp
Data processing inequality for the DeGroot statistical information.