Documentation

TestingLowerBounds.Divergences.CondRenyi

Conditional Rényi divergence #

Main definitions #

Main statements #

Notation #

Implementation details #

theorem ProbabilityTheory.integrable_rpow_rnDeriv_compProd_right_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {a : } [MeasurableSpace.CountableOrCountablyGenerated α β] (ha_pos : 0 < a) (ha_one : a 1) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] (h_ac : 1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) :
MeasureTheory.Integrable (fun (x : α × β) => ((μ.compProd κ).rnDeriv (μ.compProd η) x).toReal ^ a) (μ.compProd η) (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
noncomputable def ProbabilityTheory.condRenyiDiv {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (a : ) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) :

Rényi divergence between two kernels κ and η conditional to a measure μ. It is defined as Rₐ(κ, η | μ) := Rₐ(μ ⊗ₘ κ, μ ⊗ₘ η).

Equations
Instances For
    theorem ProbabilityTheory.condRenyiDiv_zero {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] :
    ProbabilityTheory.condRenyiDiv 0 κ η μ = -((μ.compProd η) {x : α × β | 0 < (μ.compProd κ).rnDeriv (μ.compProd η) x}).log
    theorem ProbabilityTheory.condRenyiDiv_eq_top_iff_of_one_lt {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {a : } [MeasurableSpace.CountableOrCountablyGenerated α β] (ha : 1 < a) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] :
    ProbabilityTheory.condRenyiDiv a κ η μ = (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)
    theorem ProbabilityTheory.condRenyiDiv_ne_top_iff_of_one_lt {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {a : } [MeasurableSpace.CountableOrCountablyGenerated α β] (ha : 1 < a) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] :
    ProbabilityTheory.condRenyiDiv a κ η μ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)
    theorem ProbabilityTheory.condRenyiDiv_of_mutuallySingular_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } [MeasurableSpace.CountableOrCountablyGenerated α β] (ha_nonneg : 0 a) (ha : a < 1) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] (h_ms : ∀ᵐ (x : α) ∂μ, (κ x).MutuallySingular (η x)) :
    theorem ProbabilityTheory.condRenyiDiv_of_ne_zero {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {a : } [MeasurableSpace.CountableOrCountablyGenerated α β] (ha_nonneg : 0 a) (ha_ne_one : a 1) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [ProbabilityTheory.IsFiniteKernel κ] [∀ (x : α), NeZero (κ x)] [ProbabilityTheory.IsFiniteKernel η] [MeasureTheory.IsFiniteMeasure μ] :
    ProbabilityTheory.condRenyiDiv a κ η μ = (a - 1)⁻¹ * (((μ.compProd η) Set.univ) + (a - 1) * ProbabilityTheory.condHellingerDiv a κ η μ).toENNReal.log