Documentation

TestingLowerBounds.Divergences.CondHellinger

Conditional Hellinger divergence #

Main definitions #

Main statements #

Notation #

Implementation details #

theorem ProbabilityTheory.hellingerDiv_ae_ne_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {a : } (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ) (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) (1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
theorem ProbabilityTheory.hellingerDiv_ae_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {a : } (ha_ne_one : a 1) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ) (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
theorem ProbabilityTheory.hellingerDiv_ae_ne_top_iff_of_lt_one' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {a : } (ha : a < 1) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) :
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ) ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)
theorem ProbabilityTheory.hellingerDiv_ae_ne_top_iff_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {a : } (ha : a < 1) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel η] :
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ) ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)
theorem ProbabilityTheory.integrable_hellingerDiv_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) (h_ac : 1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) :
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toRealη x) μ

Use this version only for the case 1 < a or when one of the kernels is not finite, otherwise use integrable_hellingerDiv_iff_of_lt_one, as it is strictly more general.

theorem ProbabilityTheory.integrable_hellingerDiv_iff_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_nonneg : 0 a) (ha : a < 1) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toRealη x) μ
theorem ProbabilityTheory.integrable_hellingerDiv_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha_ne_one : a 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (h_ac : 1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) :
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
theorem ProbabilityTheory.integrable_hellingerDiv_iff'_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
noncomputable def ProbabilityTheory.condHellingerDiv {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (a : ) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) :

Conditional Hellinger divergence of order a.

Equations
Instances For

    There are multiple combinations of hypotheses that give rise to slightly different versions of the following lemmas. The ones we will consider as a normal form are when we assume that μ, κ and η are all finite and a ∈ (0, 1) ∪ (1, +∞).

    Consider the following conditions:

    1. condHellingerDiv a κ η μ ≠ ⊤
    2. condHellingerDiv a κ η μ = ∫ x, (hellingerDiv a (κ x) (η x)).toReal ∂μ 3.a ∀ᵐ x ∂μ, Integrable (fun b ↦ ((∂κ x/∂η x) b).toReal ^ a) (η x) (h_int) 3.b ∀ᵐ x ∂μ, (κ x) ≪ (η x) (h_ac) 3.c Integrable (fun x ↦ ∫ b, ((∂κ x/∂η x) b).toReal ^ a ∂η x) μ (h_int')
    3. condHellingerDiv a κ η μ = (a - 1)⁻¹ * ∫ x, ∫ b, ((∂κ x/∂η x) b).toReal ^ a ∂η x ∂μ - (a - 1)⁻¹ * ((μ ⊗ₘ η) .univ).toReal

    Then the following hold:

    The implications 4. → 1./2./3. are not explicitely stated but, if needed, it should be immediate to prove 4. → 1. and then have all the other implications for free.

    theorem ProbabilityTheory.condHellingerDiv_of_not_ae_finite {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (h_ae : ¬∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ) :
    theorem ProbabilityTheory.condHellingerDiv_of_not_ae_integrable' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int : ¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) :
    theorem ProbabilityTheory.condHellingerDiv_of_not_ae_integrable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_ne_one : a 1) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int : ¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) :
    theorem ProbabilityTheory.condHellingerDiv_of_not_ae_integrable_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : a < 1) (h_int : ¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) :
    theorem ProbabilityTheory.condHellingerDiv_of_not_ae_ac_of_one_le {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 a) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_ac : ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) :
    theorem ProbabilityTheory.condHellingerDiv_of_not_integrable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (h_int : ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ) :
    theorem ProbabilityTheory.condHellingerDiv_of_not_integrable' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_nonneg : 0 a) (ha_ne_one : a 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int' : ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    theorem ProbabilityTheory.condHellingerDiv_of_ae_finite_of_integrable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (h_ae : ∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ) (h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ)
    theorem ProbabilityTheory.condHellingerDiv_of_ae_integrable_of_ae_ac_of_integrable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) (h_ac : 1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) (h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ)
    theorem ProbabilityTheory.condHellingerDiv_of_ae_integrable_of_ae_ac_of_integrable' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha_ne_one : a 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (h_ac : 1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ)
    theorem ProbabilityTheory.condHellingerDiv_of_ae_integrable_of_integrable_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : a < 1) [ProbabilityTheory.IsFiniteKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ)
    theorem ProbabilityTheory.condHellingerDiv_of_integrable'_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ)
    theorem ProbabilityTheory.condHellingerDiv_eq_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) (1 a ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
    theorem ProbabilityTheory.condHellingerDiv_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) (1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
    theorem ProbabilityTheory.condHellingerDiv_ne_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha_ne_one : a 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (1 a∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha_ne_one : a 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (1 a ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_ne_top_iff_of_one_lt {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 < a) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_top_iff_of_one_lt {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 < a) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (1 a ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_top_iff_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : a < 1) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
    theorem ProbabilityTheory.condHellingerDiv_ne_top_iff_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : a < 1) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_top_iff_of_lt_one' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_ne_top_iff_of_lt_one' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_integral_iff_of_one_lt {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 < a) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ) (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_integral_iff_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condHellingerDiv a κ η μ = (∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toRealμ) MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ
    theorem ProbabilityTheory.condHellingerDiv_eq_integral'_of_one_lt {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 < a) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (h_ac : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (a - 1)⁻¹ * (∫ (x : α), ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη xμ) - (a - 1)⁻¹ * ((μ.compProd η) Set.univ).toReal
    theorem ProbabilityTheory.condHellingerDiv_eq_integral'_of_one_lt' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 < a) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (h_ac : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (a - 1)⁻¹ * (∫ (x : α), ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη xμ) - (a - 1)⁻¹ * (μ Set.univ).toReal
    theorem ProbabilityTheory.condHellingerDiv_eq_integral'_of_one_lt'' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha : 1 < a) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) (h_ac : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (a - 1)⁻¹ * (∫ (x : α), ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη xμ) - (a - 1)⁻¹
    theorem ProbabilityTheory.condHellingerDiv_eq_integral'_of_lt_one {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (a - 1)⁻¹ * (∫ (x : α), ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη xμ) - (a - 1)⁻¹ * ((μ.compProd η) Set.univ).toReal
    theorem ProbabilityTheory.condHellingerDiv_eq_integral'_of_lt_one' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (a - 1)⁻¹ * (∫ (x : α), ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη xμ) - (a - 1)⁻¹ * (μ Set.univ).toReal
    theorem ProbabilityTheory.condHellingerDiv_eq_integral'_of_lt_one'' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {a : } (ha_pos : 0 < a) (ha : a < 1) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη x) μ) :
    ProbabilityTheory.condHellingerDiv a κ η μ = (a - 1)⁻¹ * (∫ (x : α), ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ aη xμ) - (a - 1)⁻¹