Conditional Hellinger divergence #
Main definitions #
FooBar
Main statements #
fooBar_unique
Notation #
Implementation details #
theorem
ProbabilityTheory.hellingerDiv_ae_ne_top_iff'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{a : ℝ}
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ≠ ⊤) ↔ (∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) ∧ (1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
theorem
ProbabilityTheory.hellingerDiv_ae_ne_top_iff
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{a : ℝ}
(ha_ne_one : a ≠ 1)
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ≠ ⊤) ↔ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ∧ (1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
theorem
ProbabilityTheory.hellingerDiv_ae_ne_top_iff_of_lt_one'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{a : ℝ}
(ha : a < 1)
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
:
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ≠ ⊤) ↔ ∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)
theorem
ProbabilityTheory.hellingerDiv_ae_ne_top_iff_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{a : ℝ}
(ha : a < 1)
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel η]
:
(∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ≠ ⊤) ↔ ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)
theorem
ProbabilityTheory.integrable_hellingerDiv_iff
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(h_int : ∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x))
(h_ac : 1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
:
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ ↔ MeasureTheory.Integrable
(fun (x : α) => ∫ (b : β), ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal ∂η x) μ
Use this version only for the case 1 < a
or when one of the kernels is not finite, otherwise
use integrable_hellingerDiv_iff_of_lt_one
, as it is strictly more general.
theorem
ProbabilityTheory.integrable_hellingerDiv_iff_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_nonneg : 0 ≤ a)
(ha : a < 1)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ ↔ MeasureTheory.Integrable
(fun (x : α) => ∫ (b : β), ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal ∂η x) μ
theorem
ProbabilityTheory.integrable_hellingerDiv_iff'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha_ne_one : a ≠ 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
(h_ac : 1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
:
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ ↔ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.integrable_hellingerDiv_zero
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv 0 (κ x) (η x)).toReal) μ
theorem
ProbabilityTheory.integrable_hellingerDiv_iff'_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ ↔ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
noncomputable def
ProbabilityTheory.condHellingerDiv
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(a : ℝ)
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
(μ : MeasureTheory.Measure α)
:
Conditional Hellinger divergence of order a
.
Equations
Instances For
There are multiple combinations of hypotheses that give rise to slightly different versions of
the following lemmas. The ones we will consider as a normal form are when we assume that μ
, κ
and η
are all finite and a ∈ (0, 1) ∪ (1, +∞)
.
Consider the following conditions:
condHellingerDiv a κ η μ ≠ ⊤
condHellingerDiv a κ η μ = ∫ x, (hellingerDiv a (κ x) (η x)).toReal ∂μ
3.a∀ᵐ x ∂μ, Integrable (fun b ↦ ((∂κ x/∂η x) b).toReal ^ a) (η x)
(h_int
) 3.b∀ᵐ x ∂μ, (κ x) ≪ (η x)
(h_ac
) 3.cIntegrable (fun x ↦ ∫ b, ((∂κ x/∂η x) b).toReal ^ a ∂η x) μ
(h_int'
)condHellingerDiv a κ η μ = (a - 1)⁻¹ * ∫ x, ∫ b, ((∂κ x/∂η x) b).toReal ^ a ∂η x ∂μ - (a - 1)⁻¹ * ((μ ⊗ₘ η) .univ).toReal
Then the following hold:
- if
1 < a
:- ↔ 3.a ∧ 3.b ∧ 3.c (
condHellingerDiv_ne_top_iff_of_one_lt
)
- ↔ 3.a ∧ 3.b ∧ 3.c (
- ↔ 3.a ∧ 3.b ∧ 3.c (
condHellingerDiv_eq_integral_iff_of_one_lt
)
- ↔ 3.a ∧ 3.b ∧ 3.c (
- 3.a ∧ 3.b ∧ 3.c → 4. (
condHellingerDiv_eq_integral'_of_one_lt
)
- if
a < 1
:
The implications 4. → 1./2./3. are not explicitely stated but, if needed, it should be immediate to prove 4. → 1. and then have all the other implications for free.
theorem
ProbabilityTheory.condHellingerDiv_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv 1 κ η μ = ProbabilityTheory.condKL κ η μ
theorem
ProbabilityTheory.condHellingerDiv_of_not_ae_finite
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(h_ae : ¬∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ≠ ⊤)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_not_ae_integrable'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ¬∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x))
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_not_ae_integrable
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_ne_one : a ≠ 1)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_not_ae_integrable_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : a < 1)
(h_int : ¬∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x))
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_not_ae_ac_of_one_le
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 ≤ a)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_ac : ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_not_integrable
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(h_int : ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_not_integrable'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_nonneg : 0 ≤ a)
(ha_ne_one : a ≠ 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int' : ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤
theorem
ProbabilityTheory.condHellingerDiv_of_ae_finite_of_integrable
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(h_ae : ∀ᵐ (x : α) ∂μ, ProbabilityTheory.hellingerDiv a (κ x) (η x) ≠ ⊤)
(h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_of_ae_integrable_of_ae_ac_of_integrable
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x))
(h_ac : 1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
(h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_zero_eq
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv 0 κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv 0 (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_zero_of_ae_integrable_of_integrable
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv 0 (κ x) (η x)).toReal) μ)
:
ProbabilityTheory.condHellingerDiv 0 κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv 0 (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_of_ae_integrable_of_ae_ac_of_integrable'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha_ne_one : a ≠ 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
(h_ac : 1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_of_ae_integrable_of_integrable_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : a < 1)
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
(h_int2 : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_of_integrable'_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_eq_top_iff
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤ ↔ (¬∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal)
(η x)) ∨ (1 ≤ a ∧ ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∨ ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
theorem
ProbabilityTheory.condHellingerDiv_ne_top_iff
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ ≠ ⊤ ↔ (∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) ∧ (1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∧ MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
theorem
ProbabilityTheory.condHellingerDiv_ne_top_iff'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha_ne_one : a ≠ 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ ≠ ⊤ ↔ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ∧ (1 ≤ a → ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∧ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_top_iff'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha_ne_one : a ≠ 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤ ↔ (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ∨ (1 ≤ a ∧ ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∨ ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_ne_top_iff_of_one_lt
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 < a)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ ≠ ⊤ ↔ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ∧ (∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∧ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_top_iff_of_one_lt
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 < a)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤ ↔ (¬∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ∨ (1 ≤ a ∧ ¬∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∨ ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_top_iff_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : a < 1)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤ ↔ (¬∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal)
(η x)) ∨ ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
theorem
ProbabilityTheory.condHellingerDiv_ne_top_iff_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : a < 1)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ ≠ ⊤ ↔ (∀ᵐ (x : α) ∂μ,
MeasureTheory.Integrable (fun (b : β) => ProbabilityTheory.hellingerFun a ((κ x).rnDeriv (η x) b).toReal) (η x)) ∧ MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_top_iff_of_lt_one'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ⊤ ↔ ¬MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_ne_top_iff_of_lt_one'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ ≠ ⊤ ↔ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_integral_iff_ne_top
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha_ne_one : a ≠ 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ ≠ ⊤ ↔ ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ)
theorem
ProbabilityTheory.condHellingerDiv_eq_integral_iff_of_one_lt
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 < a)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ) ↔ (∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x)) ∧ (∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) ∧ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_integral_iff_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.condHellingerDiv a κ η μ = ↑(∫ (x : α), (ProbabilityTheory.hellingerDiv a (κ x) (η x)).toReal ∂μ) ↔ MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ
theorem
ProbabilityTheory.condHellingerDiv_eq_integral'_of_one_lt
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 < a)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
(h_ac : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
theorem
ProbabilityTheory.condHellingerDiv_eq_integral'_of_one_lt'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 < a)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsMarkovKernel η]
(h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
(h_ac : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
theorem
ProbabilityTheory.condHellingerDiv_eq_integral'_of_one_lt''
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha : 1 < a)
[MeasureTheory.IsProbabilityMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsMarkovKernel η]
(h_int : ∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ((κ x).rnDeriv (η x) b).toReal ^ a) (η x))
(h_ac : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x))
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
theorem
ProbabilityTheory.condHellingerDiv_eq_integral'_of_lt_one
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
theorem
ProbabilityTheory.condHellingerDiv_eq_integral'_of_lt_one'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsMarkovKernel η]
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
theorem
ProbabilityTheory.condHellingerDiv_eq_integral'_of_lt_one''
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
{a : ℝ}
(ha_pos : 0 < a)
(ha : a < 1)
[MeasureTheory.IsProbabilityMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsMarkovKernel η]
(h_int' : MeasureTheory.Integrable (fun (x : α) => ∫ (b : β), ((κ x).rnDeriv (η x) b).toReal ^ a ∂η x) μ)
:
theorem
ProbabilityTheory.hellingerDiv_compProd_left
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{a : ℝ}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(ha_nonneg : 0 ≤ a)
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[∀ (x : α), NeZero (κ x)]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.hellingerDiv a (μ.compProd κ) (μ.compProd η) = ProbabilityTheory.condHellingerDiv a κ η μ
theorem
ProbabilityTheory.hellingerDiv_comp_left_le
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{a : ℝ}
[Nonempty α]
[StandardBorelSpace α]
[MeasurableSpace.CountableOrCountablyGenerated α β]
(ha_pos : 0 < a)
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[∀ (a : α), NeZero (κ a)]
[ProbabilityTheory.IsFiniteKernel η]
:
ProbabilityTheory.hellingerDiv a (μ.bind ⇑κ) (μ.bind ⇑η) ≤ ProbabilityTheory.condHellingerDiv a κ η μ