Documentation

TestingLowerBounds.ForMathlib.EReal

theorem EReal.coe_ennreal_toReal {x : ENNReal} (hx : x ) :
x.toReal = x
theorem EReal.lt_neg_iff_lt_neg {x : EReal} {y : EReal} :
x < -y y < -x
theorem EReal.le_neg_iff_le_neg {x : EReal} {y : EReal} :
x -y y -x
theorem EReal.neg_le_iff_neg_le {x : EReal} {y : EReal} :
-x y -y x
theorem EReal.top_mul_ennreal_coe {x : ENNReal} (hx : x 0) :
* x =
theorem EReal.ennreal_coe_mul_top {x : ENNReal} (hx : x 0) :
x * =
theorem EReal.mul_eq_top (a : EReal) (b : EReal) :
a * b = a = b < 0 a < 0 b = a = 0 < b 0 < a b =
theorem EReal.mul_ne_top (a : EReal) (b : EReal) :
a * b (a 0 b) (0 a b ) (a b 0) (a 0 b )
theorem EReal.mul_eq_bot (a : EReal) (b : EReal) :
a * b = a = 0 < b 0 < a b = a = b < 0 a < 0 b =
theorem EReal.mul_ne_bot (a : EReal) (b : EReal) :
a * b (a b 0) (a 0 b ) (a 0 b) (0 a b )
theorem EReal.mul_pos_iff {a : EReal} {b : EReal} :
0 < a * b 0 < a 0 < b a < 0 b < 0
theorem EReal.mul_neg_iff {a : EReal} {b : EReal} :
a * b < 0 0 < a b < 0 a < 0 0 < b
theorem EReal.mul_nonneg_iff {a : EReal} {b : EReal} :
0 a * b 0 a 0 b a 0 b 0
theorem EReal.mul_nonpos_iff {a : EReal} {b : EReal} :
a * b 0 0 a b 0 a 0 0 b
theorem EReal.add_ne_top {x : EReal} {y : EReal} (hx : x ) (hy : y ) :
x + y
theorem EReal.add_ne_top_iff_of_ne_bot {x : EReal} {y : EReal} (hx : x ) (hy : y ) :
theorem EReal.add_ne_top_iff_of_ne_bot_of_ne_top {x : EReal} {y : EReal} (hy : y ) (hy' : y ) :
x + y x
theorem EReal.add_ne_bot {x : EReal} {y : EReal} (hx : x ) (hy : y ) :
x + y
theorem EReal.coe_mul_add_of_nonneg {x : } (hx_nonneg : 0 x) (y : EReal) (z : EReal) :
x * (y + z) = x * y + x * z
theorem EReal.add_mul_coe_of_nonneg {x : } (hx_nonneg : 0 x) (y : EReal) (z : EReal) :
(y + z) * x = y * x + z * x
theorem EReal.add_sub_cancel (x : EReal) (y : ) :
x + y - y = x
theorem EReal.add_sub_cancel' (x : EReal) (y : ) :
y + x - y = x
@[simp]
theorem EReal.sub_self {x : EReal} (h_top : x ) (h_bot : x ) :
x - x = 0
theorem EReal.top_sub_of_ne_top {x : EReal} (hx : x ) :
theorem EReal.top_mul_add_of_nonneg {x : EReal} {y : EReal} (hx : 0 x) (hy : 0 y) :
* (x + y) = * x + * y
theorem EReal.mul_add_coe_of_nonneg (x : EReal) {y : } {z : } (hy : 0 y) (hz : 0 z) :
x * (y + z) = x * y + x * z
theorem EReal.coe_add_mul_of_nonneg (x : EReal) {y : } {z : } (hy : 0 y) (hz : 0 z) :
(y + z) * x = y * x + z * x
theorem EReal.toReal_nonneg {x : EReal} (hx : 0 x) :
0 x.toReal
theorem EReal.toReal_nonpos {x : EReal} (hx : x 0) :
x.toReal 0
theorem EReal.toReal_ne_zero_iff {x : EReal} :
x.toReal 0 x 0 x x
theorem EReal.toReal_eq_zero_iff {x : EReal} :
x.toReal = 0 x = 0 x = x =
theorem EReal.sub_nonneg {x : EReal} {y : EReal} (hy : y ) (hy' : y ) :
0 x - y y x
theorem EReal.sub_nonpos {x : EReal} {y : EReal} (hy : y ) (hy' : y ) :
x - y 0 x y
@[simp]
theorem EReal.nsmul_eq_mul {n : } {x : EReal} :
n x = n * x
theorem EReal.measurable_from_prod_countable'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} [Countable β] [MeasurableSingletonClass β] {f : β × αγ} (hf : ∀ (y : β), Measurable fun (x : α) => f (y, x)) :
theorem EReal.measurable_of_measurable_real_prod {β : Type u_2} {γ : Type u_3} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {f : EReal × βγ} (h_real : Measurable fun (p : × β) => f (p.1, p.2)) (h_bot : Measurable fun (x : β) => f (, x)) (h_top : Measurable fun (x : β) => f (, x)) :
theorem EReal.measurable_of_measurable_real_real {β : Type u_2} {mβ : MeasurableSpace β} {f : EReal × ERealβ} (h_real : Measurable fun (p : × ) => f (p.1, p.2)) (h_bot_left : Measurable fun (r : ) => f (, r)) (h_top_left : Measurable fun (r : ) => f (, r)) (h_bot_right : Measurable fun (r : ) => f (r, )) (h_top_right : Measurable fun (r : ) => f (r, )) :
noncomputable def EReal.toENNReal (x : EReal) :

Reinterpret an EReal number x as an ENNReal number. Returns 0 if x < 0.

Equations
Instances For
    @[simp]
    theorem EReal.toENNReal_top :
    .toENNReal =
    @[simp]
    theorem EReal.toENNReal_of_ne_top {x : EReal} (hx : x ) :
    x.toENNReal = ENNReal.ofReal x.toReal
    @[simp]
    theorem EReal.toENNReal_eq_top_iff {x : EReal} :
    x.toENNReal = x =
    theorem EReal.toENNReal_ne_top_iff {x : EReal} :
    x.toENNReal x
    @[simp]
    theorem EReal.toENNReal_of_nonpos {x : EReal} (hx : x 0) :
    x.toENNReal = 0
    theorem EReal.toENNReal_eq_zero_iff {x : EReal} :
    x.toENNReal = 0 x 0
    theorem EReal.toENNReal_ne_zero_iff {x : EReal} :
    x.toENNReal 0 0 < x
    @[simp]
    theorem EReal.coe_toENNReal {x : EReal} (hx : 0 x) :
    x.toENNReal = x
    @[simp]
    theorem EReal.toENNReal_coe {x : ENNReal} :
    (↑x).toENNReal = x
    theorem EReal.toENNReal_le_toENNReal {x : EReal} {y : EReal} (h : x y) :
    x.toENNReal y.toENNReal
    @[simp]
    theorem EReal.real_coe_toENNReal (x : ) :
    (↑x).toENNReal = ENNReal.ofReal x
    @[simp]
    theorem EReal.toReal_toENNReal {x : EReal} (hx : 0 x) :
    x.toENNReal.toReal = x.toReal
    theorem Measurable.ereal_toENNReal {α : Type u_1} :
    ∀ {x : MeasurableSpace α} {f : αEReal}, Measurable fMeasurable fun (x : α) => (f x).toENNReal
    theorem EReal.toENNReal_add {x : EReal} {y : EReal} (hx : 0 x) (hy : 0 y) :
    (x + y).toENNReal = x.toENNReal + y.toENNReal
    theorem EReal.toENNReal_sub {x : EReal} {y : EReal} (hy : 0 y) :
    (x - y).toENNReal = x.toENNReal - y.toENNReal
    theorem EReal.toENNReal_mul {x : EReal} {y : EReal} (hx : 0 x) :
    (x * y).toENNReal = x.toENNReal * y.toENNReal
    theorem EReal.toENNReal_mul' {x : EReal} {y : EReal} (hy : 0 y) :
    (x * y).toENNReal = x.toENNReal * y.toENNReal
    theorem ENNReal.toEReal_sub {x : ENNReal} {y : ENNReal} (hy_top : y ) (h_le : y x) :
    (x - y) = x - y
    theorem ENNReal.min_mul {a : ENNReal} {b : ENNReal} {c : ENNReal} :
    min a b * c = min (a * c) (b * c)
    theorem ENNReal.mul_min {a : ENNReal} {b : ENNReal} {c : ENNReal} :
    a * min b c = min (a * b) (a * c)
    @[simp]
    theorem ENNReal.toReal_toEReal_of_ne_top {x : ENNReal} (hx : x ) :
    x.toReal = x