Equations
theorem
EReal.measurable_from_prod_countable''
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{mγ : MeasurableSpace γ}
[Countable β]
[MeasurableSingletonClass β]
{f : β × α → γ}
(hf : ∀ (y : β), Measurable fun (x : α) => f (y, x))
:
theorem
EReal.measurable_of_measurable_real_prod
{β : Type u_2}
{γ : Type u_3}
{mβ : MeasurableSpace β}
{mγ : MeasurableSpace γ}
{f : EReal × β → γ}
(h_real : Measurable fun (p : ℝ × β) => f (↑p.1, p.2))
(h_bot : Measurable fun (x : β) => f (⊥, x))
(h_top : Measurable fun (x : β) => f (⊤, x))
:
theorem
EReal.measurable_of_measurable_real_real
{β : Type u_2}
{mβ : MeasurableSpace β}
{f : EReal × EReal → β}
(h_real : Measurable fun (p : ℝ × ℝ) => f (↑p.1, ↑p.2))
(h_bot_left : Measurable fun (r : ℝ) => f (⊥, ↑r))
(h_top_left : Measurable fun (r : ℝ) => f (⊤, ↑r))
(h_bot_right : Measurable fun (r : ℝ) => f (↑r, ⊥))
(h_top_right : Measurable fun (r : ℝ) => f (↑r, ⊤))
:
Reinterpret an EReal number x
as an ENNReal number. Returns 0
if x < 0
.
Equations
- x.toENNReal = if x = ⊤ then ⊤ else ENNReal.ofReal x.toReal
Instances For
@[simp]
@[simp]
theorem
Measurable.ereal_toENNReal
{α : Type u_1}
:
∀ {x : MeasurableSpace α} {f : α → EReal}, Measurable f → Measurable fun (x : α) => (f x).toENNReal