theorem
ProbabilityTheory.Kernel.traj_zero_map_eval_zero
{X : ℕ → Type u_2}
[(n : ℕ) → MeasurableSpace (X n)]
{κ : (n : ℕ) → Kernel ((i : ↥(Finset.Iic n)) → X ↑i) (X (n + 1))}
[∀ (n : ℕ), IsMarkovKernel (κ n)]
:
((traj κ 0).map fun (h : (n : ℕ) → X n) => h ↑default) = deterministic ⇑(MeasurableEquiv.piUnique fun (i : ↥(Finset.Iic 0)) => X ↑i) ⋯
Measurable equivalence between a product up to n + 1 and the pair of the product up to n and
the space at n + 1.
Equations
- MeasurableEquiv.IicSuccProd X n = (MeasurableEquiv.IicProdIoc ⋯).symm.trans ((MeasurableEquiv.refl ((i : ↥(Finset.Iic n)) → X ↑i)).prodCongr (MeasurableEquiv.piSingleton n).symm)
Instances For
theorem
ProbabilityTheory.Kernel.symm_IicSuccProd
{X : ℕ → Type u_2}
[(n : ℕ) → MeasurableSpace (X n)]
(n : ℕ)
:
(MeasurableEquiv.IicSuccProd X n).symm = ((MeasurableEquiv.refl ((i : ↥(Finset.Iic n)) → X ↑i)).prodCongr (MeasurableEquiv.piSingleton n)).trans
(MeasurableEquiv.IicProdIoc ⋯)
@[simp]
theorem
ProbabilityTheory.Kernel.MeasurableEquiv.IicSuccProd_apply
{X : ℕ → Type u_2}
[(n : ℕ) → MeasurableSpace (X n)]
(n : ℕ)
(h : (i : ↥(Finset.Iic (n + 1))) → X ↑i)
:
theorem
ProbabilityTheory.Kernel.MeasurableEquiv.coe_prodCongr
{α : Type u_3}
{β : Type u_4}
{γ : Type u_5}
{δ : Type u_6}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{mγ : MeasurableSpace γ}
{mδ : MeasurableSpace δ}
(e₁ : α ≃ᵐ β)
(e₂ : γ ≃ᵐ δ)
:
theorem
ProbabilityTheory.Kernel.hasLaw_Iic_of_forall_hasCondDistrib
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure P]
{X : ℕ → Type u_2}
[(n : ℕ) → MeasurableSpace (X n)]
{κ : (n : ℕ) → Kernel ((i : ↥(Finset.Iic n)) → X ↑i) (X (n + 1))}
[∀ (n : ℕ), IsMarkovKernel (κ n)]
{μ₀ : MeasureTheory.Measure (X 0)}
[MeasureTheory.IsProbabilityMeasure μ₀]
[∀ (n : ℕ), StandardBorelSpace (X n)]
[∀ (n : ℕ), Nonempty (X n)]
{Y : (n : ℕ) → Ω → X n}
(h0 : HasLaw (Y 0) μ₀ P)
(h_condDistrib : ∀ (n : ℕ), HasCondDistrib (Y (n + 1)) (fun (ω : Ω) (i : ↥(Finset.Iic n)) => Y (↑i) ω) (κ n) P)
(n : ℕ)
:
HasLaw (fun (ω : Ω) (i : ↥(Finset.Iic n)) => Y (↑i) ω)
((MeasureTheory.Measure.map (⇑(MeasurableEquiv.piUnique fun (i : ↥(Finset.Iic 0)) => X ↑i).symm) μ₀).bind
⇑(partialTraj κ 0 n))
P
theorem
ProbabilityTheory.Kernel.trajMeasure_map_frestrictLe
{X : ℕ → Type u_2}
[(n : ℕ) → MeasurableSpace (X n)]
{κ : (n : ℕ) → Kernel ((i : ↥(Finset.Iic n)) → X ↑i) (X (n + 1))}
[∀ (n : ℕ), IsMarkovKernel (κ n)]
{μ₀ : MeasureTheory.Measure (X 0)}
(n : ℕ)
:
MeasureTheory.Measure.map (Preorder.frestrictLe n) (trajMeasure μ₀ κ) = (MeasureTheory.Measure.map (⇑(MeasurableEquiv.piUnique fun (i : ↥(Finset.Iic 0)) => X ↑i).symm) μ₀).bind
⇑(partialTraj κ 0 n)
theorem
ProbabilityTheory.Kernel.eq_trajMeasure
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure P]
{X : ℕ → Type u_2}
[(n : ℕ) → MeasurableSpace (X n)]
{κ : (n : ℕ) → Kernel ((i : ↥(Finset.Iic n)) → X ↑i) (X (n + 1))}
[∀ (n : ℕ), IsMarkovKernel (κ n)]
{μ₀ : MeasureTheory.Measure (X 0)}
[MeasureTheory.IsProbabilityMeasure μ₀]
[∀ (n : ℕ), StandardBorelSpace (X n)]
[∀ (n : ℕ), Nonempty (X n)]
{Y : (n : ℕ) → Ω → X n}
(hY_meas : ∀ (n : ℕ), Measurable (Y n))
(h0 : HasLaw (Y 0) μ₀ P)
(h_condDistrib : ∀ (n : ℕ), HasCondDistrib (Y (n + 1)) (fun (ω : Ω) (i : ↥(Finset.Iic n)) => Y (↑i) ω) (κ n) P)
:
Uniqueness of trajMeasure.