Documentation

LeanBandits.ForMathlib.Traj

theorem ProbabilityTheory.Kernel.traj_zero_map_eval_zero {X : Type u_2} [(n : ) → MeasurableSpace (X n)] {κ : (n : ) → Kernel ((i : (Finset.Iic n)) → X i) (X (n + 1))} [∀ (n : ), IsMarkovKernel (κ n)] :
((traj κ 0).map fun (h : (n : ) → X n) => h default) = deterministic (MeasurableEquiv.piUnique fun (i : (Finset.Iic 0)) => X i)
def MeasurableEquiv.IicSuccProd (X : Type u_3) [(n : ) → MeasurableSpace (X n)] (n : ) :
((i : (Finset.Iic (n + 1))) → X i) ≃ᵐ ((i : (Finset.Iic n)) → X i) × X (n + 1)

Measurable equivalence between a product up to n + 1 and the pair of the product up to n and the space at n + 1.

Equations
Instances For
    @[simp]
    theorem ProbabilityTheory.Kernel.MeasurableEquiv.IicSuccProd_apply {X : Type u_2} [(n : ) → MeasurableSpace (X n)] (n : ) (h : (i : (Finset.Iic (n + 1))) → X i) :
    (MeasurableEquiv.IicSuccProd X n) h = (fun (i : (Finset.Iic n)) => h i, , h n + 1, )
    theorem ProbabilityTheory.Kernel.MeasurableEquiv.coe_prodCongr {α : Type u_3} {β : Type u_4} {γ : Type u_5} {δ : Type u_6} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} (e₁ : α ≃ᵐ β) (e₂ : γ ≃ᵐ δ) :
    (e₁.prodCongr e₂) = Prod.map e₁ e₂
    theorem ProbabilityTheory.Kernel.hasLaw_Iic_of_forall_hasCondDistrib {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {X : Type u_2} [(n : ) → MeasurableSpace (X n)] {κ : (n : ) → Kernel ((i : (Finset.Iic n)) → X i) (X (n + 1))} [∀ (n : ), IsMarkovKernel (κ n)] {μ₀ : MeasureTheory.Measure (X 0)} [MeasureTheory.IsProbabilityMeasure μ₀] [∀ (n : ), StandardBorelSpace (X n)] [∀ (n : ), Nonempty (X n)] {Y : (n : ) → ΩX n} (h0 : HasLaw (Y 0) μ₀ P) (h_condDistrib : ∀ (n : ), HasCondDistrib (Y (n + 1)) (fun (ω : Ω) (i : (Finset.Iic n)) => Y (↑i) ω) (κ n) P) (n : ) :
    HasLaw (fun (ω : Ω) (i : (Finset.Iic n)) => Y (↑i) ω) ((MeasureTheory.Measure.map (⇑(MeasurableEquiv.piUnique fun (i : (Finset.Iic 0)) => X i).symm) μ₀).bind (partialTraj κ 0 n)) P
    theorem ProbabilityTheory.Kernel.trajMeasure_map_frestrictLe {X : Type u_2} [(n : ) → MeasurableSpace (X n)] {κ : (n : ) → Kernel ((i : (Finset.Iic n)) → X i) (X (n + 1))} [∀ (n : ), IsMarkovKernel (κ n)] {μ₀ : MeasureTheory.Measure (X 0)} (n : ) :
    theorem ProbabilityTheory.Kernel.eq_trajMeasure {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {X : Type u_2} [(n : ) → MeasurableSpace (X n)] {κ : (n : ) → Kernel ((i : (Finset.Iic n)) → X i) (X (n + 1))} [∀ (n : ), IsMarkovKernel (κ n)] {μ₀ : MeasureTheory.Measure (X 0)} [MeasureTheory.IsProbabilityMeasure μ₀] [∀ (n : ), StandardBorelSpace (X n)] [∀ (n : ), Nonempty (X n)] {Y : (n : ) → ΩX n} (hY_meas : ∀ (n : ), Measurable (Y n)) (h0 : HasLaw (Y 0) μ₀ P) (h_condDistrib : ∀ (n : ), HasCondDistrib (Y (n + 1)) (fun (ω : Ω) (i : (Finset.Iic n)) => Y (↑i) ω) (κ n) P) :
    MeasureTheory.Measure.map (fun (ω : Ω) (n : ) => Y n ω) P = trajMeasure μ₀ κ

    Uniqueness of trajMeasure.