Documentation

LeanBandits.ForMathlib.IndepFun

theorem ProbabilityTheory.iIndepFun_nat_iff_forall_indepFun {Ω : Type u_2} {E : Type u_4} { : MeasurableSpace Ω} {mE : MeasurableSpace E} {μ : MeasureTheory.Measure Ω} {X : ΩE} (hX : ∀ (n : ), AEMeasurable (X n) μ) :
iIndepFun X μ ∀ (n : ), IndepFun (X (n + 1)) (fun (ω : Ω) (i : (Finset.Iic n)) => X (↑i) ω) μ
theorem ProbabilityTheory.IndepFun_map_iff {Ω : Type u_2} {Ω' : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mE : MeasurableSpace E} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X Y : Ω'E} {f : ΩΩ'} (hf : AEMeasurable f μ) (hX : AEMeasurable X (MeasureTheory.Measure.map f μ)) (hY : AEMeasurable Y (MeasureTheory.Measure.map f μ)) :
theorem ProbabilityTheory.iIndepFun_map_iff {Ω : Type u_2} {Ω' : Type u_3} {E : Type u_4} {ι : Type u_5} [Countable ι] { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mE : MeasurableSpace E} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {X : ιΩ'E} {f : ΩΩ'} (hf : AEMeasurable f μ) (hX : ∀ (n : ι), AEMeasurable (X n) (MeasureTheory.Measure.map f μ)) :
iIndepFun X (MeasureTheory.Measure.map f μ) iIndepFun (fun (n : ι) => X n f) μ
theorem ProbabilityTheory.identDistrib_map_right_iff {Ω : Type u_2} {Ω' : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mE : MeasurableSpace E} {μ ν : MeasureTheory.Measure Ω} {X : ΩE} {Y : Ω'E} {f : ΩΩ'} (hf : AEMeasurable f ν) (hX : AEMeasurable X μ) (hY : AEMeasurable Y (MeasureTheory.Measure.map f ν)) :
theorem ProbabilityTheory.identDistrib_comm {Ω : Type u_2} {Ω' : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mE : MeasurableSpace E} {μ : MeasureTheory.Measure Ω} (X : ΩE) (Y : Ω'E) {ν : MeasureTheory.Measure Ω'} :
IdentDistrib X Y μ ν IdentDistrib Y X ν μ
theorem ProbabilityTheory.identDistrib_map_left_iff {Ω : Type u_2} {Ω' : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mE : MeasurableSpace E} {μ ν : MeasureTheory.Measure Ω} {X : ΩE} {Y : Ω'E} {f : ΩΩ'} (hf : AEMeasurable f ν) (hX : AEMeasurable X μ) (hY : AEMeasurable Y (MeasureTheory.Measure.map f ν)) :