Documentation

Mathlib.Probability.Independence.InfinitePi

Independence of an infinite family of random variables #

In this file we provide several results about independence of arbitrary families of random variables, relying on Measure.infinitePi.

Implementation note #

There are several possible measurability assumptions:

theorem ProbabilityTheory.iIndepFun_iff_map_fun_eq_infinitePi_map₀ {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure P] {𝓧 : ιType u_3} {m𝓧 : (i : ι) → MeasurableSpace (𝓧 i)} {X : (i : ι) → Ω𝓧 i} (mX : AEMeasurable (fun (ω : Ω) (i : ι) => X i ω) P) :
iIndepFun X P MeasureTheory.Measure.map (fun (ω : Ω) (i : ι) => X i ω) P = MeasureTheory.Measure.infinitePi fun (i : ι) => MeasureTheory.Measure.map (X i) P

Random variables are independent iff their joint distribution is the product measure. This is a version where the random variable ω ↦ (Xᵢ(ω))ᵢ is almost everywhere measurable. See iIndepFun_iff_map_fun_eq_infinitePi_map₀' for a version which only assumes that each Xᵢ is almost everywhere measurable and that ι is countable.

theorem ProbabilityTheory.iIndepFun_iff_map_fun_eq_infinitePi_map₀' {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure P] {𝓧 : ιType u_3} {m𝓧 : (i : ι) → MeasurableSpace (𝓧 i)} {X : (i : ι) → Ω𝓧 i} [Countable ι] (mX : ∀ (i : ι), AEMeasurable (X i) P) :
iIndepFun X P MeasureTheory.Measure.map (fun (ω : Ω) (i : ι) => X i ω) P = MeasureTheory.Measure.infinitePi fun (i : ι) => MeasureTheory.Measure.map (X i) P

Random variables are independent iff their joint distribution is the product measure. This is an AEMeasurable version of iIndepFun_iff_map_fun_eq_infinitePi_map, which is why it requires ι to be countable.

theorem ProbabilityTheory.iIndepFun_iff_map_fun_eq_infinitePi_map {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure P] {𝓧 : ιType u_3} {m𝓧 : (i : ι) → MeasurableSpace (𝓧 i)} {X : (i : ι) → Ω𝓧 i} (mX : ∀ (i : ι), Measurable (X i)) :
iIndepFun X P MeasureTheory.Measure.map (fun (ω : Ω) (i : ι) => X i ω) P = MeasureTheory.Measure.infinitePi fun (i : ι) => MeasureTheory.Measure.map (X i) P

Random variables are independent iff their joint distribution is the product measure.

theorem ProbabilityTheory.iIndepFun_infinitePi {ι : Type u_1} {𝓧 : ιType u_3} {m𝓧 : (i : ι) → MeasurableSpace (𝓧 i)} {Ω : ιType u_4} { : (i : ι) → MeasurableSpace (Ω i)} {P : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (P i)] {X : (i : ι) → Ω i𝓧 i} (mX : ∀ (i : ι), Measurable (X i)) :
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.infinitePi P)

Given random variables X i : Ω i → 𝓧 i, they are independent when viewed as random variables defined on the product space Π i, Ω i.

theorem ProbabilityTheory.iIndepFun_uncurry {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {κ : ιType u_4} {𝓧 : (i : ι) → κ iType u_5} {m𝓧 : (i : ι) → (j : κ i) → MeasurableSpace (𝓧 i j)} {X : (i : ι) → (j : κ i) → Ω𝓧 i j} (mX : ∀ (i : ι) (j : κ i), Measurable (X i j)) (h1 : iIndepFun (fun (i : ι) (ω : Ω) (x : κ i) => X i x ω) P) (h2 : ∀ (i : ι), iIndepFun (X i) P) :
iIndepFun (fun (p : (i : ι) × κ i) (ω : Ω) => X p.fst p.snd ω) P

Consider ((Xᵢⱼ)ⱼ)ᵢ a family of families of random variables. Assume that for any i, the random variables (Xᵢⱼ)ⱼ are independent. Assume furthermore that the random variables ((Xᵢⱼ)ⱼ)ᵢ are independent. Then the random variables (Xᵢⱼ) indexed by pairs (i, j) are independent.

This is a dependent version of iIndepFun_uncurry'.

theorem ProbabilityTheory.iIndepFun_uncurry_infinitePi {ι : Type u_1} {κ : ιType u_4} {𝓧 : (i : ι) → κ iType u_5} {m𝓧 : (i : ι) → (j : κ i) → MeasurableSpace (𝓧 i j)} {Ω : (i : ι) → κ iType u_6} { : (i : ι) → (j : κ i) → MeasurableSpace (Ω i j)} {X : (i : ι) → (j : κ i) → Ω i j𝓧 i j} (μ : (i : ι) → (j : κ i) → MeasureTheory.Measure (Ω i j)) [∀ (i : ι) (j : κ i), MeasureTheory.IsProbabilityMeasure (μ i j)] (mX : ∀ (i : ι) (j : κ i), Measurable (X i j)) :
iIndepFun (fun (p : (i : ι) × κ i) (ω : (i : ι) → (j : κ i) → Ω i j) => X p.fst p.snd (ω p.fst p.snd)) (MeasureTheory.Measure.infinitePi fun (i : ι) => MeasureTheory.Measure.infinitePi (μ i))

Given random variables X i j : Ω i j → 𝓧 i j, they are independent when viewed as random variables defined on the product space Π i, Π j, Ω i j.

theorem ProbabilityTheory.iIndepFun_uncurry' {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {κ : Type u_4} {𝓧 : ικType u_5} {m𝓧 : (i : ι) → (j : κ) → MeasurableSpace (𝓧 i j)} {X : (i : ι) → (j : κ) → Ω𝓧 i j} (mX : ∀ (i : ι) (j : κ), Measurable (X i j)) (h1 : iIndepFun (fun (i : ι) (ω : Ω) (x : κ) => X i x ω) P) (h2 : ∀ (i : ι), iIndepFun (X i) P) :
iIndepFun (fun (p : ι × κ) (ω : Ω) => X p.1 p.2 ω) P

Consider ((Xᵢⱼ)ⱼ)ᵢ a family of families of random variables. Assume that for any i, the random variables (Xᵢⱼ)ⱼ are independent. Assume furthermore that the random variables ((Xᵢⱼ)ⱼ)ᵢ are independent. Then the random variables (Xᵢⱼ) indexed by pairs (i, j) are independent.

This is a non-dependent version of iIndepFun_uncurry.

theorem ProbabilityTheory.iIndepFun_uncurry_infinitePi' {ι : Type u_1} {κ : Type u_4} {𝓧 : ικType u_5} {m𝓧 : (i : ι) → (j : κ) → MeasurableSpace (𝓧 i j)} {Ω : ικType u_6} { : (i : ι) → (j : κ) → MeasurableSpace (Ω i j)} {X : (i : ι) → (j : κ) → Ω i j𝓧 i j} (μ : (i : ι) → (j : κ) → MeasureTheory.Measure (Ω i j)) [∀ (i : ι) (j : κ), MeasureTheory.IsProbabilityMeasure (μ i j)] (mX : ∀ (i : ι) (j : κ), Measurable (X i j)) :
iIndepFun (fun (p : ι × κ) (ω : (i : ι) → (j : κ) → Ω i j) => X p.1 p.2 (ω p.1 p.2)) (MeasureTheory.Measure.infinitePi fun (i : ι) => MeasureTheory.Measure.infinitePi (μ i))

Given random variables X i j : Ω i j → 𝓧 i j, they are independent when viewed as random variables defined on the product space Π i, Π j, Ω i j.