Documentation

LeanBandits.ForMathlib.HasCondDistrib

A predicate for having a specified conditional distribution #

structure ProbabilityTheory.HasCondDistrib {α : Type u_1} {β : Type u_2} {Ω : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] (Y : αΩ) (X : αβ) (κ : Kernel β Ω) (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] :

Predicate stating that the conditional distribution of Y given X under the measure μ is equal to the kernel κ.

Instances For
    theorem ProbabilityTheory.hasCondDistrib_fst_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {Y : αΩ} {X : αβ} {κ : Kernel β Ω} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] {ν : MeasureTheory.Measure γ} [MeasureTheory.IsProbabilityMeasure ν] (h : HasCondDistrib Y X κ μ) :
    HasCondDistrib (fun (ω : α × γ) => Y ω.1) (fun (ω : α × γ) => X ω.1) κ (μ.prod ν)
    theorem ProbabilityTheory.HasCondDistrib.comp {α : Type u_1} {β : Type u_2} {Ω : Type u_4} {Ω' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {mΩ' : MeasurableSpace Ω'} [StandardBorelSpace Ω'] [Nonempty Ω'] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ} {κ : Kernel β Ω} [MeasureTheory.IsFiniteMeasure μ] (h : HasCondDistrib Y X κ μ) {f : ΩΩ'} (hf : Measurable f) :
    HasCondDistrib (fun (ω : α) => f (Y ω)) X (κ.map f) μ
    theorem ProbabilityTheory.HasCondDistrib.fst {α : Type u_1} {β : Type u_2} {Ω : Type u_4} {Ω' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {mΩ' : MeasurableSpace Ω'} [StandardBorelSpace Ω'] [Nonempty Ω'] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ × Ω'} {κ : Kernel β (Ω × Ω')} [MeasureTheory.IsFiniteMeasure μ] (h : HasCondDistrib Y X κ μ) :
    HasCondDistrib (fun (ω : α) => (Y ω).1) X κ.fst μ
    theorem ProbabilityTheory.HasCondDistrib.snd {α : Type u_1} {β : Type u_2} {Ω : Type u_4} {Ω' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {mΩ' : MeasurableSpace Ω'} [StandardBorelSpace Ω'] [Nonempty Ω'] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ × Ω'} {κ : Kernel β (Ω × Ω')} [MeasureTheory.IsFiniteMeasure μ] (h : HasCondDistrib Y X κ μ) :
    HasCondDistrib (fun (ω : α) => (Y ω).2) X κ.snd μ
    theorem ProbabilityTheory.HasCondDistrib.comp_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ} {κ : Kernel β Ω} [MeasureTheory.IsFiniteMeasure μ] [IsFiniteKernel κ] (h : HasCondDistrib Y X κ μ) (f : β ≃ᵐ γ) :
    HasCondDistrib Y (f X) (κ.comap f.symm ) μ
    theorem ProbabilityTheory.HasCondDistrib.prod_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ} {κ : Kernel β Ω} [MeasureTheory.IsFiniteMeasure μ] [IsFiniteKernel κ] (h : HasCondDistrib Y X κ μ) {f : βγ} (hf : Measurable f) :
    HasCondDistrib Y (fun (a : α) => (X a, f (X a))) (Kernel.prodMkRight γ κ) μ
    theorem ProbabilityTheory.hasCondDistrib_prod_right_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {μ : MeasureTheory.Measure α} {κ : Kernel β Ω} [MeasureTheory.IsFiniteMeasure μ] [IsFiniteKernel κ] (X : αβ) (Y : αΩ) {f : βγ} (hf : Measurable f) :
    HasCondDistrib Y (fun (a : α) => (X a, f (X a))) (Kernel.prodMkRight γ κ) μ HasCondDistrib Y X κ μ
    theorem ProbabilityTheory.HasLaw.prod_of_hasCondDistrib {α : Type u_1} {β : Type u_2} {Ω : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ} {κ : Kernel β Ω} {P : MeasureTheory.Measure β} [MeasureTheory.IsFiniteMeasure μ] [IsSFiniteKernel κ] (h1 : HasLaw X P μ) (h2 : HasCondDistrib Y X κ μ) :
    HasLaw (fun (ω : α) => (X ω, Y ω)) (P.compProd κ) μ
    theorem ProbabilityTheory.HasCondDistrib.prod {α : Type u_1} {β : Type u_2} {Ω : Type u_4} {Ω' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace Ω} [StandardBorelSpace Ω] [Nonempty Ω] {mΩ' : MeasurableSpace Ω'} [StandardBorelSpace Ω'] [Nonempty Ω'] {μ : MeasureTheory.Measure α} {X : αβ} {Y : αΩ} {κ : Kernel β Ω} [MeasureTheory.IsFiniteMeasure μ] [IsFiniteKernel κ] {Z : αΩ'} {η : Kernel (β × Ω) Ω'} [IsFiniteKernel η] (h1 : HasCondDistrib Y X κ μ) (h2 : HasCondDistrib Z (fun (ω : α) => (X ω, Y ω)) η μ) :
    HasCondDistrib (fun (ω : α) => (Y ω, Z ω)) X (κ.compProd η) μ