Documentation

LeanBandits.ForMathlib.CondIndepFun

Laws of stepsUntil and rewardByCount #

theorem ProbabilityTheory.Kernel.IndepFun.of_prod_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {ε : Type u_7} {Ω : Type u_8} { : MeasurableSpace Ω} { : MeasurableSpace ε} {μ : MeasureTheory.Measure Ω} {κ : Kernel Ω α} {X : αβ} {Y : αγ} {T : αε} (h : IndepFun X (fun (ω : α) => (Y ω, T ω)) κ μ) :
IndepFun X Y κ μ
theorem ProbabilityTheory.Kernel.IndepFun.of_prod_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {ε : Type u_7} {Ω : Type u_8} { : MeasurableSpace Ω} { : MeasurableSpace ε} {μ : MeasureTheory.Measure Ω} {κ : Kernel Ω α} {X : αβ} {Y : αγ} {T : αε} (h : IndepFun (fun (ω : α) => (X ω, T ω)) Y κ μ) :
IndepFun X Y κ μ
theorem ProbabilityTheory.CondIndepFun.of_prod_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {μ : MeasureTheory.Measure α} {ε : Type u_7} { : MeasurableSpace ε} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} {Z : αδ} {T : αε} (hZ : Measurable Z) (h : CondIndepFun (MeasurableSpace.comap Z inferInstance) X (fun (ω : α) => (Y ω, T ω)) μ) :
theorem ProbabilityTheory.CondIndepFun.of_prod_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {μ : MeasureTheory.Measure α} {ε : Type u_7} { : MeasurableSpace ε} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} {Z : αδ} {T : αε} (hZ : Measurable Z) (h : CondIndepFun (MeasurableSpace.comap Z inferInstance) (fun (ω : α) => (X ω, T ω)) Y μ) :
theorem ProbabilityTheory.IndepFun.of_measurable {α : Type u_1} {γ : Type u_3} {δ : Type u_4} {γ' : Type u_5} {δ' : Type u_6} { : MeasurableSpace α} { : MeasurableSpace γ} { : MeasurableSpace δ} {mγ' : MeasurableSpace γ'} {mδ' : MeasurableSpace δ'} [StandardBorelSpace δ'] [Nonempty δ'] [StandardBorelSpace γ'] [Nonempty γ'] {μ : MeasureTheory.Measure α} {Y : αγ} {Z : αδ} {Y' : αγ'} {Z' : αδ'} (h_indep : IndepFun Y Z μ) (hY_meas : Measurable Y') (hZ_meas : Measurable Z') :
IndepFun Y' Z' μ
theorem ProbabilityTheory.IndepFun.of_measurable_left {α : Type u_1} {γ : Type u_3} {δ : Type u_4} {γ' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace γ} { : MeasurableSpace δ} {mγ' : MeasurableSpace γ'} [StandardBorelSpace γ'] [Nonempty γ'] {μ : MeasureTheory.Measure α} {Y : αγ} {Z : αδ} {Y' : αγ'} (h_indep : IndepFun Y Z μ) (hY_meas : Measurable Y') :
IndepFun Y' Z μ
theorem ProbabilityTheory.IndepFun.of_measurable_right {α : Type u_1} {γ : Type u_3} {δ : Type u_4} {δ' : Type u_6} { : MeasurableSpace α} { : MeasurableSpace γ} { : MeasurableSpace δ} {mδ' : MeasurableSpace δ'} [StandardBorelSpace δ'] [Nonempty δ'] {μ : MeasureTheory.Measure α} {Y : αγ} {Z : αδ} {Z' : αδ'} (h_indep : IndepFun Y Z μ) (hZ_meas : Measurable Z') :
IndepFun Y Z' μ
theorem ProbabilityTheory.CondIndepFun.of_measurable {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {γ' : Type u_5} {δ' : Type u_6} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {mγ' : MeasurableSpace γ'} {mδ' : MeasurableSpace δ'} [StandardBorelSpace δ'] [Nonempty δ'] [StandardBorelSpace γ'] [Nonempty γ'] {μ : MeasureTheory.Measure α} {X : αβ} {hX : Measurable X} {Y : αγ} {Z : αδ} {Y' : αγ'} {Z' : αδ'} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndepFun (MeasurableSpace.comap X inferInstance) Y Z μ) (hY_meas : Measurable Y') (hZ_meas : Measurable Z') :
theorem ProbabilityTheory.CondIndepFun.of_measurable_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {γ' : Type u_5} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {mγ' : MeasurableSpace γ'} [StandardBorelSpace γ'] [Nonempty γ'] {μ : MeasureTheory.Measure α} {X : αβ} {hX : Measurable X} {Y : αγ} {Z : αδ} {Y' : αγ'} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndepFun (MeasurableSpace.comap X inferInstance) Y Z μ) (hY_meas : Measurable Y') :
theorem ProbabilityTheory.CondIndepFun.of_measurable_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {δ' : Type u_6} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {mδ' : MeasurableSpace δ'} [StandardBorelSpace δ'] [Nonempty δ'] {μ : MeasureTheory.Measure α} {X : αβ} {hX : Measurable X} {Y : αγ} {Z : αδ} {Z' : αδ'} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndepFun (MeasurableSpace.comap X inferInstance) Y Z μ) (hZ_meas : Measurable Z') :