Documentation

BrownianMotion.Auxiliary.IsStoppingTime

theorem MeasureTheory.isStoppingTime_of_measurableSet_lt_of_isRightContinuous {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] {𝓕 : Filtration ι } [NoMaxOrder ι] {τ : ΩWithTop ι} (h𝓕 : 𝓕.IsRightContinuous) ( : ∀ (i : ι), MeasurableSet {ω : Ω | τ ω < i}) :
theorem MeasureTheory.isStoppingTime_of_measurableSet_lt_of_isRightContinuous' {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] {𝓕 : Filtration ι } {τ : ΩWithTop ι} (h𝓕 : 𝓕.IsRightContinuous) (hτ1 : ∀ (i : ι), ¬IsMax iMeasurableSet {ω : Ω | τ ω < i}) (hτ2 : ∀ (i : ι), IsMax iMeasurableSet {ω : Ω | τ ω i}) :
theorem MeasureTheory.IsStoppingTime.iInf {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] [NoMaxOrder ι] {𝓕 : Filtration ι } {τ : ΩWithTop ι} (s : Set ) (h𝓕 : 𝓕.IsRightContinuous) ( : ∀ (n : ), IsStoppingTime 𝓕 (τ n)) :
IsStoppingTime 𝓕 fun (ω : Ω) => ns, τ n ω
theorem MeasureTheory.stoppedProcess_min_eq_stoppedProcess {ι : Type u_4} {Ω : Type u_5} {E : Type u_6} [Nonempty ι] [LinearOrder ι] (X : ιΩE) (τ : ΩWithTop ι) {i j : ι} (hij : i j) :
stoppedProcess X (fun (ω : Ω) => min (↑j) (τ ω)) i = stoppedProcess X τ i