Documentation

BrownianMotion.StochasticIntegral.LocalizingSequence

Localizing sequences of stopping times #

structure ProbabilityTheory.IsPreLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (τ : ΩWithTop ι) (P : MeasureTheory.Measure Ω := by volume_tac) :

A pre-localizing sequence is a sequence of stopping times that tends almost surely to infinity.

Instances For
    structure ProbabilityTheory.IsLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (τ : ΩWithTop ι) (P : MeasureTheory.Measure Ω := by volume_tac) extends ProbabilityTheory.IsPreLocalizingSequence 𝓕 τ P :

    A localizing sequence is a sequence of stopping times that is almost surely increasing and tends almost surely to infinity.

    Instances For
      theorem ProbabilityTheory.isLocalizingSequence_const_top {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) :
      IsLocalizingSequence 𝓕 (fun (x : ) (x_1 : Ω) => ) P
      theorem ProbabilityTheory.IsLocalizingSequence.min {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] {τ σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : IsLocalizingSequence 𝓕 σ P) :
      IsLocalizingSequence 𝓕 (τσ) P
      theorem ProbabilityTheory.measure_iInter_of_ae_antitone {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_4} [Countable ι] [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {s : ιSet Ω} (hs : ∀ᵐ (ω : Ω) P, Antitone fun (x : ι) => s x ω) (hsm : ∀ (i : ι), MeasureTheory.NullMeasurableSet (s i) P) (hfin : ∃ (i : ι), P (s i) ) :
      P (⋂ (i : ι), s i) = ⨅ (i : ι), P (s i)
      theorem ProbabilityTheory.isLocalizingSequence_of_isPreLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {τ : ΩWithTop ι} (h𝓕 : 𝓕.IsRightContinuous) ( : IsPreLocalizingSequence 𝓕 τ P) :
      IsLocalizingSequence 𝓕 (fun (i : ) (ω : Ω) => ⨅ (j : ), ⨅ (_ : j i), τ j ω) P
      theorem ProbabilityTheory.isPreLocalizingSequence_of_isLocalizingSequence_aux' {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] {τ : ΩWithTop ι} {σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : ∀ (n : ), IsLocalizingSequence 𝓕 (σ n) P) :
      ∃ (T : ι), Filter.Tendsto T Filter.atTop Filter.atTop ∀ (n : ), ∃ (k : ), P {ω : Ω | σ n k ω < min (τ n ω) (T n)} (1 / 2) ^ n

      Auxliary defintion for isPreLocalizingSequence_of_isLocalizingSequence which constructs a strictly increasing sequence from a given sequence.

      Equations
      Instances For
        theorem ProbabilityTheory.isPreLocalizingSequence_of_isLocalizingSequence_aux {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] {τ : ΩWithTop ι} {σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : ∀ (n : ), IsLocalizingSequence 𝓕 (σ n) P) :
        ∃ (nk : ), StrictMono nk ∃ (T : ι), Filter.Tendsto T Filter.atTop Filter.atTop ∀ (n : ), P {ω : Ω | σ n (nk n) ω < min (τ n ω) (T n)} (1 / 2) ^ n
        theorem ProbabilityTheory.isPreLocalizingSequence_of_isLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] [NoMaxOrder ι] {τ : ΩWithTop ι} {σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : ∀ (n : ), IsLocalizingSequence 𝓕 (σ n) P) :
        ∃ (nk : ), StrictMono nk IsPreLocalizingSequence 𝓕 (fun (i : ) (ω : Ω) => min (τ i ω) (σ i (nk i) ω)) P
        noncomputable def ProbabilityTheory.LocalizingSequenceOfProp {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] (X : ιΩE) (p : (ιE)Prop) :
        ΩWithTop ι

        Given a property on paths which holds almost surely for a stochastic process, we construct a localizing sequence by setting the stopping time to be ∞ whenever the property holds.

        Equations
        Instances For
          theorem ProbabilityTheory.isStoppingTime_ae_const {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } [𝓕.HasUsualConditions P] (τ : ΩWithTop ι) (c : WithTop ι) ( : τ =ᵐ[P] Function.const Ω c) :
          theorem ProbabilityTheory.isLocalizingSequence_localizingSequenceOfProp {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [𝓕.HasUsualConditions P] {p : (ιE)Prop} (hpX : ∀ᵐ (ω : Ω) P, p fun (x : ι) => X x ω) :