Doob's Lᵖ inequality #
theorem
ProbabilityTheory.maximal_ineq_countable
{ι : Type u_1}
{Ω : Type u_2}
[LinearOrder ι]
[OrderBot ι]
[TopologicalSpace ι]
[OrderTopology ι]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{𝓕 : MeasureTheory.Filtration ι mΩ}
{Y : ι → Ω → ℝ}
[Countable ι]
[MeasureTheory.IsFiniteMeasure P]
(hsub : MeasureTheory.Submartingale Y 𝓕 P)
(hnonneg : 0 ≤ Y)
(ε : NNReal)
(n : ι)
:
theorem
ProbabilityTheory.maximal_ineq_norm_countable
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[LinearOrder ι]
[OrderBot ι]
[TopologicalSpace ι]
[OrderTopology ι]
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : ι → Ω → E}
{𝓕 : MeasureTheory.Filtration ι mΩ}
[Countable ι]
[MeasureTheory.IsFiniteMeasure P]
(hsub : MeasureTheory.Martingale X 𝓕 P)
(ε : NNReal)
(n : ι)
:
theorem
ProbabilityTheory.maximal_ineq
{ι : Type u_1}
{Ω : Type u_2}
[LinearOrder ι]
[OrderBot ι]
[TopologicalSpace ι]
[OrderTopology ι]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{𝓕 : MeasureTheory.Filtration ι mΩ}
{Y : ι → Ω → ℝ}
[SecondCountableTopology ι]
[MeasureTheory.IsFiniteMeasure P]
(hsub : MeasureTheory.Submartingale Y 𝓕 P)
(hnonneg : 0 ≤ Y)
(ε : NNReal)
(n : ι)
:
theorem
ProbabilityTheory.maximal_ineq_norm
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[LinearOrder ι]
[OrderBot ι]
[TopologicalSpace ι]
[OrderTopology ι]
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : ι → Ω → E}
{𝓕 : MeasureTheory.Filtration ι mΩ}
[SecondCountableTopology ι]
[MeasureTheory.IsFiniteMeasure P]
(hsub : MeasureTheory.Martingale X 𝓕 P)
(ε : NNReal)
(n : ι)
: