Documentation

BrownianMotion.StochasticIntegral.DoobLp

Doob's Lᵖ inequality #

theorem ProbabilityTheory.maximal_ineq_countable {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓕 : MeasureTheory.Filtration ι } {Y : ιΩ} [Countable ι] [MeasureTheory.IsFiniteMeasure P] (hsub : MeasureTheory.Submartingale Y 𝓕 P) (hnonneg : 0 Y) (ε : NNReal) (n : ι) :
ε P {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), Y i ω} ENNReal.ofReal ( (ω : Ω) in {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), Y i ω}, Y n ω P)
theorem ProbabilityTheory.maximal_ineq_norm_countable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } [Countable ι] [MeasureTheory.IsFiniteMeasure P] (hsub : MeasureTheory.Martingale X 𝓕 P) (ε : NNReal) (n : ι) :
ε P {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), X i ω} ENNReal.ofReal ( (ω : Ω) in {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), X i ω}, X n ω P)
theorem ProbabilityTheory.maximal_ineq {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓕 : MeasureTheory.Filtration ι } {Y : ιΩ} [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] (hsub : MeasureTheory.Submartingale Y 𝓕 P) (hnonneg : 0 Y) (ε : NNReal) (n : ι) :
ε P {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), Y i ω} ENNReal.ofReal ( (ω : Ω) in {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), Y i ω}, Y n ω P)
theorem ProbabilityTheory.maximal_ineq_norm {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] (hsub : MeasureTheory.Martingale X 𝓕 P) (ε : NNReal) (n : ι) :
ε P {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), X i ω} ENNReal.ofReal ( (ω : Ω) in {ω : Ω | ε ⨆ (i : ι), ⨆ (_ : i n), X i ω}, X n ω P)