Documentation

TestingLowerBounds.ErealLLR

EReal-valued log likelihood ratio #

Main definitions #

Main statements #

noncomputable def MeasureTheory.EReal.llr {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) (x : α) :

Log-likelihood ratio between two measures: logarithm (using ENNReal.log) of the Radon-Nikodym derivative.

Equations
Instances For
    theorem MeasureTheory.EReal.llr_def {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) :
    MeasureTheory.EReal.llr μ ν = fun (x : α) => (μ.rnDeriv ν x).log
    theorem MeasureTheory.EReal.exp_llr {α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) (x : α) :
    (MeasureTheory.EReal.llr μ ν x).exp = μ.rnDeriv ν x
    theorem MeasureTheory.EReal.exp_neg_llr {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] (hμν : μ.AbsolutelyContinuous ν) :
    (fun (x : α) => (-MeasureTheory.EReal.llr μ ν x).exp) =ᵐ[μ] ν.rnDeriv μ
    theorem MeasureTheory.EReal.exp_neg_llr' {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] [MeasureTheory.SigmaFinite ν] (hμν : ν.AbsolutelyContinuous μ) :
    (fun (x : α) => (-MeasureTheory.EReal.llr μ ν x).exp) =ᵐ[ν] ν.rnDeriv μ
    theorem MeasureTheory.EReal.llr_smul_left {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [μ.HaveLebesgueDecomposition ν] (hμν : μ.AbsolutelyContinuous ν) (c : ENNReal) (hc_ne_top : c ) :
    MeasureTheory.EReal.llr (c μ) ν =ᵐ[μ] fun (x : α) => MeasureTheory.EReal.llr μ ν x + c.log
    theorem MeasureTheory.EReal.llr_smul_right {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [μ.HaveLebesgueDecomposition ν] (hμν : μ.AbsolutelyContinuous ν) (c : ENNReal) (hc : c 0) (hc_ne_top : c ) :
    MeasureTheory.EReal.llr μ (c ν) =ᵐ[μ] fun (x : α) => MeasureTheory.EReal.llr μ ν x - c.log