EReal-valued log likelihood ratio #
Main definitions #
Main statements #
EReal.exp_llr
:EReal.exp (EReal.llr μ ν x) = μ.rnDeriv ν x
noncomputable def
MeasureTheory.EReal.llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(x : α)
:
Log-likelihood ratio between two measures: logarithm (using ENNReal.log
) of the
Radon-Nikodym derivative.
Equations
- MeasureTheory.EReal.llr μ ν x = (μ.rnDeriv ν x).log
Instances For
theorem
MeasureTheory.EReal.llr_def
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
:
MeasureTheory.EReal.llr μ ν = fun (x : α) => (μ.rnDeriv ν x).log
theorem
MeasureTheory.EReal.exp_llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(x : α)
:
(MeasureTheory.EReal.llr μ ν x).exp = μ.rnDeriv ν x
theorem
MeasureTheory.EReal.neg_llr
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
:
theorem
MeasureTheory.EReal.exp_neg_llr
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hμν : μ.AbsolutelyContinuous ν)
:
(fun (x : α) => (-MeasureTheory.EReal.llr μ ν x).exp) =ᵐ[μ] ν.rnDeriv μ
theorem
MeasureTheory.EReal.exp_neg_llr'
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.SigmaFinite μ]
[MeasureTheory.SigmaFinite ν]
(hμν : ν.AbsolutelyContinuous μ)
:
(fun (x : α) => (-MeasureTheory.EReal.llr μ ν x).exp) =ᵐ[ν] ν.rnDeriv μ
theorem
MeasureTheory.measurable_ereal_llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
:
theorem
MeasureTheory.stronglyMeasurable_ereal_llr
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
:
theorem
MeasureTheory.EReal.llr_smul_left
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure μ]
[μ.HaveLebesgueDecomposition ν]
(hμν : μ.AbsolutelyContinuous ν)
(c : ENNReal)
(hc_ne_top : c ≠ ⊤)
:
MeasureTheory.EReal.llr (c • μ) ν =ᵐ[μ] fun (x : α) => MeasureTheory.EReal.llr μ ν x + c.log
theorem
MeasureTheory.EReal.llr_smul_right
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
[MeasureTheory.IsFiniteMeasure μ]
[μ.HaveLebesgueDecomposition ν]
(hμν : μ.AbsolutelyContinuous ν)
(c : ENNReal)
(hc : c ≠ 0)
(hc_ne_top : c ≠ ⊤)
:
MeasureTheory.EReal.llr μ (c • ν) =ᵐ[μ] fun (x : α) => MeasureTheory.EReal.llr μ ν x - c.log