Neighborhoods of a set #
In this file we define the filter πΛ’ s or nhdsSet s consisting of all neighborhoods of a set
s.
Main Properties #
There are a couple different notions equivalent to s β πΛ’ t:
- s β interior tusing- subset_interior_iff_mem_nhdsSet
- β x : X, x β t β s β π xusing- mem_nhdsSet_iff_forall
- β U : Set X, IsOpen U β§ t β U β§ U β susing- mem_nhdsSet_iff_exists
Furthermore, we have the following results:
- monotone_nhdsSet:- πΛ’is monotone
- In Tβ-spaces, πΛ’is strictly monotone and hence injective:strict_mono_nhdsSet/injective_nhdsSet. These results are inMathlib/Topology/Separation/Basic.lean.
theorem
bUnion_mem_nhdsSet
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
{t : X β Set X}
(h : β x β s, t x β nhds x)
 :
@[simp]
An open set belongs to its own set neighborhoods filter.
theorem
subset_of_mem_nhdsSet
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(h : t β nhdsSet s)
 :
theorem
Filter.EventuallyEq.self_of_nhdsSet
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
{Y : Type u_3}
{f g : X β Y}
(h : f =αΆ [nhdsSet s] g)
 :
Set.EqOn f g s
@[simp]
theorem
IsOpen.nhdsSet_eq
{X : Type u_1}
[TopologicalSpace X]
{s : Set X}
 :
IsOpen s β nhdsSet s = Filter.principal s
Alias of the reverse direction of nhdsSet_eq_principal_iff.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
IsClosed.nhdsSet_le_sup
{X : Type u_1}
[TopologicalSpace X]
(s : Set X)
{t : Set X}
(h : IsClosed t)
 :
theorem
IsClosed.nhdsSet_le_sup'
{X : Type u_1}
[TopologicalSpace X]
(s : Set X)
{t : Set X}
(h : IsClosed t)
 :