Documentation

Mathlib.RingTheory.Valuation.RankOne

Rank one valuations #

We define rank one valuations.

Main Definitions #

Tags #

valuation, rank one

class Valuation.RankOne {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) extends v.IsNontrivial :
Type u_2

A valuation has rank one if it is nontrivial and its image is contained in ℝ≥0. Note that this class includes the data of an inclusion morphism Γ₀ → ℝ≥0.

Instances
    theorem Valuation.RankOne.strictMono {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
    theorem Valuation.RankOne.nontrivial {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
    ∃ (r : R), v r 0 v r 1
    theorem Valuation.RankOne.zero_of_hom_zero {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] {x : Γ₀} (hx : (hom v) x = 0) :
    x = 0

    If v is a rank one valuation and x : Γ₀ has image 0 under RankOne.hom v, then x = 0.

    theorem Valuation.RankOne.hom_eq_zero_iff {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] {x : Γ₀} :
    (hom v) x = 0 x = 0

    If v is a rank one valuation, thenx : Γ₀ has image 0 under RankOne.hom v if and only if x = 0.

    def Valuation.RankOne.unit {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
    Γ₀ˣ

    A nontrivial unit of Γ₀, given that there exists a rank one v : Valuation R Γ₀.

    Equations
    Instances For
      theorem Valuation.RankOne.unit_ne_one {R : Type u_1} [Ring R] {Γ₀ : Type u_2} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) [v.RankOne] :
      unit v 1

      A proof that RankOne.unit v ≠ 1.

      A valuative relation has a rank one valuation when it is both nontrivial and the rank is at most one.

      Equations
      Instances For

        Convert between the rank one statement on valuative relation's induced valuation.

        Equations
        Instances For