Finiteness conditions in commutative algebra #
In this file we define a notion of finiteness that is common in commutative algebra.
Main declarations #
- Submodule.FG,- Ideal.FGThese express that some object is finitely generated as submodule over some base ring.
- Module.Finite,- RingHom.Finite,- AlgHom.Finiteall of these express that some object is finitely generated as module over some base ring.
def
Submodule.FG
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(N : Submodule R M)
 :
A submodule of M is finitely generated if it is the span of a finite subset of M.
Equations
- N.FG = ∃ (S : Finset M), Submodule.span R ↑S = N
Instances For
@[deprecated Submodule.fg_iff_addSubgroup_fg (since := "2025-08-20")]
Alias of Submodule.fg_iff_addSubgroup_fg.
A module over a semiring is Module.Finite if it is finitely generated as a module.
- A module over a semiring is - Module.Finiteif it is finitely generated as a module.
Instances
theorem
Module.finite_def
{R : Type u_6}
{M : Type u_7}
[Semiring R]
[AddCommMonoid M]
[Module R M]
 :
theorem
Module.Finite.exists_fin
{R : Type u_1}
{M : Type u_4}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
 :
See also Module.Finite.exists_fin'.
A ring morphism A →+* B is RingHom.Finite if B is finitely generated as A-module.
Equations
- f.Finite = Module.Finite A B