Principal upper/lower sets #
The results in this file all assume that the underlying type is equipped with at least a preorder.
Main declarations #
- UpperSet.Ici: Principal upper set.- Set.Icias an upper set.
- UpperSet.Ioi: Strict principal upper set.- Set.Ioias an upper set.
- LowerSet.Iic: Principal lower set.- Set.Iicas a lower set.
- LowerSet.Iio: Strict principal lower set.- Set.Iioas a lower set.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
UpperSet.Ici_iSup₂
{α : Type u_1}
{ι : Sort u_3}
{κ : ι → Sort u_4}
[CompleteLattice α]
(f : (i : ι) → κ i → α)
 :
@[simp]
@[simp]
@[simp]
@[simp]
theorem
LowerSet.Iic_iInf₂
{α : Type u_1}
{ι : Sort u_3}
{κ : ι → Sort u_4}
[CompleteLattice α]
(f : (i : ι) → κ i → α)
 :