Bochner integrals of convolutions #
This file contains results about the Bochner integrals of convolutions of measures.
These results are not placed in the main convolution file because we don't want to import Bochner integrals over there.
Main statements #
- integrable_conv_iff: A function is integrable with respect to the convolution- μ ∗ νiff the function- y ↦ f (x + y)is integrable with respect to- νfor- μ-almost every- xand the function- x ↦ ∫ y, ‖f (x + y)‖ ∂νis integrable with respect to- μ.
- integral_conv: if- fis integrable with respect to the convolution- μ ∗ ν, then- ∫ x, f x ∂(μ ∗ₘ ν) = ∫ x, ∫ y, f (x + y) ∂ν ∂μ.
theorem
MeasureTheory.integrable_mconv_iff
{M : Type u_1}
{F : Type u_2}
[Monoid M]
{mM : MeasurableSpace M}
[MeasurableMul₂ M]
[NormedAddCommGroup F]
{μ ν : Measure M}
{f : M → F}
[SFinite ν]
(hf : AEStronglyMeasurable f (μ.mconv ν))
 :
theorem
MeasureTheory.integrable_conv_iff
{M : Type u_1}
{F : Type u_2}
[AddMonoid M]
{mM : MeasurableSpace M}
[MeasurableAdd₂ M]
[NormedAddCommGroup F]
{μ ν : Measure M}
{f : M → F}
[SFinite ν]
(hf : AEStronglyMeasurable f (μ.conv ν))
 :
theorem
MeasureTheory.integral_mconv
{M : Type u_1}
{F : Type u_2}
[Monoid M]
{mM : MeasurableSpace M}
[MeasurableMul₂ M]
[NormedAddCommGroup F]
{μ ν : Measure M}
{f : M → F}
[NormedSpace ℝ F]
[SFinite μ]
[SFinite ν]
(hf : Integrable f (μ.mconv ν))
 :
theorem
MeasureTheory.integral_conv
{M : Type u_1}
{F : Type u_2}
[AddMonoid M]
{mM : MeasurableSpace M}
[MeasurableAdd₂ M]
[NormedAddCommGroup F]
{μ ν : Measure M}
{f : M → F}
[NormedSpace ℝ F]
[SFinite μ]
[SFinite ν]
(hf : Integrable f (μ.conv ν))
 :