Canonical homomorphism from a finite family of monoids #
This file defines the construction of the canonical homomorphism from a family of monoids.
Given a family of morphisms ϕ i : N i →* M for each i : ι where elements in the
images of different morphisms commute, we obtain a canonical morphism
MonoidHom.noncommPiCoprod : (Π i, N i) →* M that coincides with ϕ
Main definitions #
- MonoidHom.noncommPiCoprod : (Π i, N i) →* Mis the main homomorphism
- Subgroup.noncommPiCoprod : (Π i, H i) →* Gis the specialization to- H i : Subgroup Gand the subgroup embedding.
Main theorems #
- MonoidHom.noncommPiCoprodcoincides with- ϕ iwhen restricted to- N i
- MonoidHom.noncommPiCoprod_mrange: The range of- MonoidHom.noncommPiCoprodis- ⨆ (i : ι), (ϕ i).mrange
- MonoidHom.noncommPiCoprod_range: The range of- MonoidHom.noncommPiCoprodis- ⨆ (i : ι), (ϕ i).range
- Subgroup.noncommPiCoprod_range: The range of- Subgroup.noncommPiCoprodis- ⨆ (i : ι), H i.
- MonoidHom.injective_noncommPiCoprod_of_iSupIndep: in the case of groups,- pi_hom.homis injective if the- ϕare injective and the ranges of the- ϕare independent.
- MonoidHom.independent_range_of_coprime_order: If the- N ihave coprime orders, then the ranges of the- ϕare independent.
- Subgroup.independent_of_coprime_order: If commuting normal subgroups- H ihave coprime orders, they are independent.
Finset.noncommProd is “injective” in f if f maps into independent subgroups.  This
generalizes (one direction of) Subgroup.disjoint_iff_mul_eq_one.
Finset.noncommSum is “injective” in f if f maps into independent subgroups.
This generalizes (one direction of) AddSubgroup.disjoint_iff_add_eq_zero.
The canonical homomorphism from a family of monoids.
Equations
- MonoidHom.noncommPiCoprod ϕ hcomm = { toFun := fun (f : (i : ι) → N i) => Finset.univ.noncommProd (fun (i : ι) => (ϕ i) (f i)) ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
The canonical homomorphism from a family of additive monoids. See also
LinearMap.lsum for a linear version without the commutativity assumption.
Equations
- AddMonoidHom.noncommPiCoprod ϕ hcomm = { toFun := fun (f : (i : ι) → N i) => Finset.univ.noncommSum (fun (i : ι) => (ϕ i) (f i)) ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
The universal property of MonoidHom.noncommPiCoprod
Given monoid morphisms φᵢ : Nᵢ → M whose images pairwise commute,
there exists a unique monoid morphism φ : Πᵢ Nᵢ → M that induces the φᵢ,
and it is given by MonoidHom.noncommPiCoprod.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The universal property of MonoidHom.noncommPiCoprod
Given monoid morphisms φᵢ : Nᵢ → M whose images pairwise commute,
there exists a unique monoid morphism φ : Πᵢ Nᵢ → M that induces the φᵢ,
and it is given by AddMonoidHom.noncommPiCoprod.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given monoid morphisms φᵢ : Nᵢ → M and f : M → P, if we have sufficient commutativity, then
f ∘ (∐ᵢ φᵢ) = ∐ᵢ (f ∘ φᵢ)
The canonical homomorphism from a family of subgroups where elements from different subgroups commute
Equations
- Subgroup.noncommPiCoprod hcomm = MonoidHom.noncommPiCoprod (fun (i : ι) => (H i).subtype) ⋯
Instances For
The canonical homomorphism from a family of additive subgroups where elements from different subgroups commute
Equations
- AddSubgroup.noncommPiCoprod hcomm = AddMonoidHom.noncommPiCoprod (fun (i : ι) => (H i).subtype) ⋯