ZMod n and quotient groups / rings #
This file relates ZMod n to the quotient group ℤ / AddSubgroup.zmultiples (n : ℤ).
Main definitions #
- ZMod.quotientZMultiplesNatEquivZModand- ZMod.quotientZMultiplesEquivZMod:- ZMod nis the group quotient of- ℤby- n ℤ := AddSubgroup.zmultiples (n), (where- n : ℕand- n : ℤrespectively)
- ZMod.lift n fis the map from- ZMod ninduced by- f : ℤ →+ Athat maps- nto- 0.
Tags #
zmod, quotient group
noncomputable def
AddAction.zmultiplesQuotientStabilizerEquiv
{α : Type u_3}
{β : Type u_4}
[AddGroup α]
(a : α)
[AddAction α β]
(b : β)
 :
↥(AddSubgroup.zmultiples a) ⧸ stabilizer (↥(AddSubgroup.zmultiples a)) b ≃+   ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)
The quotient (ℤ ∙ a) ⧸ (stabilizer b) is cyclic of order minimalPeriod (a +ᵥ ·) b.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
MulAction.zpowersQuotientStabilizerEquiv
{α : Type u_3}
{β : Type u_4}
[Group α]
(a : α)
[MulAction α β]
(b : β)
 :
↥(Subgroup.zpowers a) ⧸ stabilizer (↥(Subgroup.zpowers a)) b ≃*   Multiplicative (ZMod (Function.minimalPeriod (fun (x : β) => a • x) b))
The quotient (a ^ ℤ) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((•) a) b.
Equations
Instances For
noncomputable def
MulAction.orbitZPowersEquiv
{α : Type u_3}
{β : Type u_4}
[Group α]
(a : α)
[MulAction α β]
(b : β)
 :
The orbit (a ^ ℤ) • b is a cycle of order minimalPeriod ((•) a) b.
Equations
Instances For
noncomputable def
AddAction.orbitZMultiplesEquiv
{α : Type u_5}
{β : Type u_6}
[AddGroup α]
(a : α)
[AddAction α β]
(b : β)
 :
The orbit (ℤ • a) +ᵥ b is a cycle of order minimalPeriod (a +ᵥ ·) b.
Equations
Instances For
theorem
MulAction.minimalPeriod_eq_card
{α : Type u_3}
{β : Type u_4}
[Group α]
(a : α)
[MulAction α β]
(b : β)
[Fintype ↑(orbit (↥(Subgroup.zpowers a)) b)]
 :
theorem
AddAction.minimalPeriod_eq_card
{α : Type u_3}
{β : Type u_4}
[AddGroup α]
(a : α)
[AddAction α β]
(b : β)
[Fintype ↑(orbit (↥(AddSubgroup.zmultiples a)) b)]
 :
Function.minimalPeriod (fun (x : β) => a +ᵥ x) b = Fintype.card ↑(orbit (↥(AddSubgroup.zmultiples a)) b)
instance
MulAction.minimalPeriod_pos
{α : Type u_3}
{β : Type u_4}
[Group α]
(a : α)
[MulAction α β]
(b : β)
[Finite ↑(orbit (↥(Subgroup.zpowers a)) b)]
 :
NeZero (Function.minimalPeriod (fun (x : β) => a • x) b)
instance
AddAction.minimalPeriod_pos
{α : Type u_3}
{β : Type u_4}
[AddGroup α]
(a : α)
[AddAction α β]
(b : β)
[Finite ↑(orbit (↥(AddSubgroup.zmultiples a)) b)]
 :
NeZero (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)
@[simp]
See also Fintype.card_zmultiples.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
IsOfFinOrder.finite_zpowers
{α : Type u_3}
[Group α]
{a : α}
 :
IsOfFinOrder a → (↑(Subgroup.zpowers a)).Finite
Alias of the reverse direction of finite_zpowers.
theorem
IsOfFinAddOrder.finite_zmultiples
{α : Type u_3}
[AddGroup α]
{a : α}
 :
IsOfFinAddOrder a → (↑(AddSubgroup.zmultiples a)).Finite
noncomputable def
Subgroup.quotientEquivSigmaZMod
{G : Type u_3}
[Group G]
(H : Subgroup G)
(g : G)
 :
G ⧸ H ≃   (q : MulAction.orbitRel.Quotient (↥(zpowers g)) (G ⧸ H)) ×
    ZMod (Function.minimalPeriod (fun (x : G ⧸ H) => g • x) (Quotient.out q))
Partition G ⧸ H into orbits of the action of g : G.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Subgroup.quotientEquivSigmaZMod_symm_apply
{G : Type u_3}
[Group G]
(H : Subgroup G)
(g : G)
(q : MulAction.orbitRel.Quotient (↥(zpowers g)) (G ⧸ H))
(k : ZMod (Function.minimalPeriod (fun (x : G ⧸ H) => g • x) (Quotient.out q)))
 :
theorem
Subgroup.quotientEquivSigmaZMod_apply
{G : Type u_3}
[Group G]
(H : Subgroup G)
(g : G)
(q : MulAction.orbitRel.Quotient (↥(zpowers g)) (G ⧸ H))
(k : ℤ)
 :