Documentation

LeanBandits.SequentialLearning.Deterministic

Deterministic algorithms #

noncomputable def Learning.detAlgorithm {α : Type u_1} {R : Type u_2} { : MeasurableSpace α} {mR : MeasurableSpace R} (nextaction : (n : ) → ((Finset.Iic n)α × R)α) (h_next : ∀ (n : ), Measurable (nextaction n)) (action0 : α) :

A deterministic algorithm.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Learning.detAlgorithm_policy {α : Type u_1} {R : Type u_2} { : MeasurableSpace α} {mR : MeasurableSpace R} (nextaction : (n : ) → ((Finset.Iic n)α × R)α) (h_next : ∀ (n : ), Measurable (nextaction n)) (action0 : α) (n : ) :
    (detAlgorithm nextaction h_next action0).policy n = ProbabilityTheory.Kernel.deterministic (nextaction n)
    @[simp]
    theorem Learning.detAlgorithm_p0 {α : Type u_1} {R : Type u_2} { : MeasurableSpace α} {mR : MeasurableSpace R} (nextaction : (n : ) → ((Finset.Iic n)α × R)α) (h_next : ∀ (n : ), Measurable (nextaction n)) (action0 : α) :
    (detAlgorithm nextaction h_next action0).p0 = MeasureTheory.Measure.dirac action0
    theorem Learning.HasLaw_action_zero_detAlgorithm {α : Type u_1} {R : Type u_2} { : MeasurableSpace α} {mR : MeasurableSpace R} {nextaction : (n : ) → ((Finset.Iic n)α × R)α} {h_next : ∀ (n : ), Measurable (nextaction n)} {action0 : α} {env : Environment α R} :
    theorem Learning.action_zero_detAlgorithm {α : Type u_1} {R : Type u_2} { : MeasurableSpace α} {mR : MeasurableSpace R} {nextaction : (n : ) → ((Finset.Iic n)α × R)α} {h_next : ∀ (n : ), Measurable (nextaction n)} {action0 : α} {env : Environment α R} [MeasurableSingletonClass α] :
    action 0 =ᵐ[trajMeasure (detAlgorithm nextaction h_next action0) env] fun (x : α × R) => action0
    theorem Learning.action_detAlgorithm_ae_eq {α : Type u_1} {R : Type u_2} { : MeasurableSpace α} {mR : MeasurableSpace R} {nextaction : (n : ) → ((Finset.Iic n)α × R)α} {h_next : ∀ (n : ), Measurable (nextaction n)} {action0 : α} {env : Environment α R} [StandardBorelSpace α] [Nonempty α] [StandardBorelSpace R] [Nonempty R] (n : ) :
    action (n + 1) =ᵐ[trajMeasure (detAlgorithm nextaction h_next action0) env] fun (h : α × R) => nextaction n fun (i : (Finset.Iic n)) => h i