Documentation

LeanBandits.ForMathlib.SubGaussian

theorem ProbabilityTheory.HasSubgaussianMGF.measure_le_le {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} {c : NNReal} (h : HasSubgaussianMGF X c μ) {ε : } ( : 0 ε) :
μ.real {ω : Ω | X ω -ε} Real.exp (-ε ^ 2 / (2 * c))

Chernoff bound on the left tail of a sub-Gaussian random variable.

theorem ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_le_of_iIndepFun {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} (h_indep : iIndepFun X μ) {c : ιNNReal} {s : Finset ι} (h_subG : is, HasSubgaussianMGF (X i) (c i) μ) {ε : } ( : 0 ε) :
μ.real {ω : Ω | is, X i ω -ε} Real.exp (-ε ^ 2 / (2 * (∑ is, c i)))

Hoeffding inequality for sub-Gaussian random variables.

theorem ProbabilityTheory.HasSubgaussianMGF.measure_sum_range_le_le_of_iIndepFun {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} (h_indep : iIndepFun X μ) {c : NNReal} {n : } (h_subG : i < n, HasSubgaussianMGF (X i) c μ) {ε : } ( : 0 ε) :
μ.real {ω : Ω | iFinset.range n, X i ω -ε} Real.exp (-ε ^ 2 / (2 * n * c))

Hoeffding inequality for sub-Gaussian random variables.

theorem ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_sum_le {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {ι' : Type u_3} {X : ιΩ} {cX : ιNNReal} {s : Finset ι} {Y : ι'Ω} {cY : ι'NNReal} {t : Finset ι'} [MeasureTheory.IsFiniteMeasure μ] (hX_indep : iIndepFun X μ) (hY_indep : iIndepFun Y μ) (hX_subG : is, HasSubgaussianMGF (fun (ω : Ω) => X i ω - (x : Ω), X i x μ) (cX i) μ) (hY_subG : jt, HasSubgaussianMGF (fun (ω : Ω) => Y j ω - (x : Ω), Y j x μ) (cY j) μ) (h_indep_sum : IndepFun (fun (ω : Ω) => is, X i ω) (fun (ω : Ω) => jt, Y j ω) μ) (h_le : jt, (x : Ω), Y j x μ is, (x : Ω), X i x μ) :
μ.real {ω : Ω | is, X i ω jt, Y j ω} Real.exp (-(jt, (x : Ω), Y j x μ - is, (x : Ω), X i x μ) ^ 2 / (2 * ((∑ is, cX i) + (∑ jt, cY j))))
theorem ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_sum_le' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {ι' : Type u_3} {X : ιΩ} {cX : ιNNReal} {s : Finset ι} {Y : ι'Ω} {cY : ι'NNReal} {t : Finset ι'} [MeasureTheory.IsFiniteMeasure μ] (hX_indep : iIndepFun X μ) (hY_indep : iIndepFun Y μ) (hX_subG : is, HasSubgaussianMGF (fun (ω : Ω) => X i ω - (x : Ω), X i x μ) (cX i) μ) (hY_subG : jt, HasSubgaussianMGF (fun (ω : Ω) => Y j ω - (x : Ω), Y j x μ) (cY j) μ) (h_indep_sum : IndepFun (fun (ω : Ω) (x : ι) => X x ω) (fun (ω : Ω) (x : ι') => Y x ω) μ) (h_le : jt, (x : Ω), Y j x μ is, (x : Ω), X i x μ) :
μ.real {ω : Ω | is, X i ω jt, Y j ω} Real.exp (-(jt, (x : Ω), Y j x μ - is, (x : Ω), X i x μ) ^ 2 / (2 * ((∑ is, cX i) + (∑ jt, cY j))))