Documentation

LeanBandits.ForMathlib.SubGaussian

theorem ProbabilityTheory.mgf_const_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (α : ) :
mgf (fun (ω : Ω) => α * X ω) μ t = mgf X μ (α * t)

If 0 belongs to the interior of the interval integrableExpSet X μ, then X is integrable.

theorem ProbabilityTheory.Kernel.HasSubgaussianMGF.id_map_iff {Ω : Type u_1} {Ω' : Type u_2} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {ν : MeasureTheory.Measure Ω'} {κ : Kernel Ω' Ω} {X : Ω} {c : NNReal} (hX : Measurable X) :
theorem ProbabilityTheory.Kernel.HasSubgaussianMGF.const_mul {Ω : Type u_1} {Ω' : Type u_2} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {ν : MeasureTheory.Measure Ω'} {κ : Kernel Ω' Ω} {X : Ω} {c : NNReal} (h : HasSubgaussianMGF X c κ ν) (r : ) :
HasSubgaussianMGF (fun (ω : Ω) => r * X ω) (r ^ 2, * c) κ ν
theorem ProbabilityTheory.HasSubgaussianMGF.congr_identDistrib {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} {c : NNReal} {Ω' : Type u_2} {mΩ' : MeasurableSpace Ω'} {μ' : MeasureTheory.Measure Ω'} {Y : Ω'} (hX : HasSubgaussianMGF X c μ) (hXY : IdentDistrib X Y μ μ') :
theorem ProbabilityTheory.HasSubgaussianMGF.const_mul {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} {c : NNReal} (h : HasSubgaussianMGF X c μ) (r : ) :
HasSubgaussianMGF (fun (ω : Ω) => r * X ω) (r ^ 2, * c) μ
theorem ProbabilityTheory.HasSubgaussianMGF.sub_of_indepFun {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X Y : Ω} {cX cY : NNReal} (hX : HasSubgaussianMGF X cX μ) (hY : HasSubgaussianMGF Y cY μ) (hindep : IndepFun X Y μ) :
HasSubgaussianMGF (fun (ω : Ω) => X ω - Y ω) (cX + cY) μ
theorem ProbabilityTheory.HasSubgaussianMGF.measure_le_le {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X Y : Ω} {cX cY : NNReal} (hX : HasSubgaussianMGF (fun (ω : Ω) => X ω - (x : Ω), X x μ) cX μ) (hY : HasSubgaussianMGF (fun (ω : Ω) => Y ω - (x : Ω), Y x μ) cY μ) (hindep : IndepFun X Y μ) (h_le : (x : Ω), Y x μ (x : Ω), X x μ) :
μ.real {ω : Ω | X ω Y ω} Real.exp (-( (x : Ω), Y x μ - (x : Ω), X x μ) ^ 2 / (2 * (cX + cY)))
theorem ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_sum_le {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {ι' : Type u_3} {X : ιΩ} {cX : ιNNReal} {s : Finset ι} {Y : ι'Ω} {cY : ι'NNReal} {t : Finset ι'} [MeasureTheory.IsFiniteMeasure μ] (hX_indep : iIndepFun X μ) (hY_indep : iIndepFun Y μ) (hX_subG : is, HasSubgaussianMGF (fun (ω : Ω) => X i ω - (x : Ω), X i x μ) (cX i) μ) (hY_subG : jt, HasSubgaussianMGF (fun (ω : Ω) => Y j ω - (x : Ω), Y j x μ) (cY j) μ) (h_indep_sum : IndepFun (fun (ω : Ω) => is, X i ω) (fun (ω : Ω) => jt, Y j ω) μ) (h_le : jt, (x : Ω), Y j x μ is, (x : Ω), X i x μ) :
μ.real {ω : Ω | is, X i ω jt, Y j ω} Real.exp (-(jt, (x : Ω), Y j x μ - is, (x : Ω), X i x μ) ^ 2 / (2 * ((∑ is, cX i) + (∑ jt, cY j))))
theorem ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_sum_le' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {ι' : Type u_3} {X : ιΩ} {cX : ιNNReal} {s : Finset ι} {Y : ι'Ω} {cY : ι'NNReal} {t : Finset ι'} [MeasureTheory.IsFiniteMeasure μ] (hX_indep : iIndepFun X μ) (hY_indep : iIndepFun Y μ) (hX_subG : is, HasSubgaussianMGF (fun (ω : Ω) => X i ω - (x : Ω), X i x μ) (cX i) μ) (hY_subG : jt, HasSubgaussianMGF (fun (ω : Ω) => Y j ω - (x : Ω), Y j x μ) (cY j) μ) (h_indep_sum : IndepFun (fun (ω : Ω) (x : ι) => X x ω) (fun (ω : Ω) (x : ι') => Y x ω) μ) (h_le : jt, (x : Ω), Y j x μ is, (x : Ω), X i x μ) :
μ.real {ω : Ω | is, X i ω jt, Y j ω} Real.exp (-(jt, (x : Ω), Y j x μ - is, (x : Ω), X i x μ) ^ 2 / (2 * ((∑ is, cX i) + (∑ jt, cY j))))