theorem
ProbabilityTheory.HasSubgaussianMGF.measure_le_le
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
{c : NNReal}
(h : HasSubgaussianMGF X c μ)
{ε : ℝ}
(hε : 0 ≤ ε)
:
Chernoff bound on the left tail of a sub-Gaussian random variable.
theorem
ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_le_of_iIndepFun
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
(h_indep : iIndepFun X μ)
{c : ι → NNReal}
{s : Finset ι}
(h_subG : ∀ i ∈ s, HasSubgaussianMGF (X i) (c i) μ)
{ε : ℝ}
(hε : 0 ≤ ε)
:
Hoeffding inequality for sub-Gaussian random variables.
theorem
ProbabilityTheory.HasSubgaussianMGF.measure_sum_range_le_le_of_iIndepFun
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : ℕ → Ω → ℝ}
(h_indep : iIndepFun X μ)
{c : NNReal}
{n : ℕ}
(h_subG : ∀ i < n, HasSubgaussianMGF (X i) c μ)
{ε : ℝ}
(hε : 0 ≤ ε)
:
Hoeffding inequality for sub-Gaussian random variables.
theorem
ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_sum_le
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{ι' : Type u_3}
{X : ι → Ω → ℝ}
{cX : ι → NNReal}
{s : Finset ι}
{Y : ι' → Ω → ℝ}
{cY : ι' → NNReal}
{t : Finset ι'}
[MeasureTheory.IsFiniteMeasure μ]
(hX_indep : iIndepFun X μ)
(hY_indep : iIndepFun Y μ)
(hX_subG : ∀ i ∈ s, HasSubgaussianMGF (fun (ω : Ω) => X i ω - ∫ (x : Ω), X i x ∂μ) (cX i) μ)
(hY_subG : ∀ j ∈ t, HasSubgaussianMGF (fun (ω : Ω) => Y j ω - ∫ (x : Ω), Y j x ∂μ) (cY j) μ)
(h_indep_sum : IndepFun (fun (ω : Ω) => ∑ i ∈ s, X i ω) (fun (ω : Ω) => ∑ j ∈ t, Y j ω) μ)
(h_le : ∑ j ∈ t, ∫ (x : Ω), Y j x ∂μ ≤ ∑ i ∈ s, ∫ (x : Ω), X i x ∂μ)
:
theorem
ProbabilityTheory.HasSubgaussianMGF.measure_sum_le_sum_le'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{ι' : Type u_3}
{X : ι → Ω → ℝ}
{cX : ι → NNReal}
{s : Finset ι}
{Y : ι' → Ω → ℝ}
{cY : ι' → NNReal}
{t : Finset ι'}
[MeasureTheory.IsFiniteMeasure μ]
(hX_indep : iIndepFun X μ)
(hY_indep : iIndepFun Y μ)
(hX_subG : ∀ i ∈ s, HasSubgaussianMGF (fun (ω : Ω) => X i ω - ∫ (x : Ω), X i x ∂μ) (cX i) μ)
(hY_subG : ∀ j ∈ t, HasSubgaussianMGF (fun (ω : Ω) => Y j ω - ∫ (x : Ω), Y j x ∂μ) (cY j) μ)
(h_indep_sum : IndepFun (fun (ω : Ω) (x : ι) => X x ω) (fun (ω : Ω) (x : ι') => Y x ω) μ)
(h_le : ∑ j ∈ t, ∫ (x : Ω), Y j x ∂μ ≤ ∑ i ∈ s, ∫ (x : Ω), X i x ∂μ)
: