Documentation

LeanBandits.ForMathlib.Measurable

Measurability lemmas #

theorem MeasureTheory.ae_eq_set_iff {α : Type u_1} { : MeasurableSpace α} {μ : Measure α} {s t : Set α} :
s =ᶠ[ae μ] t ∀ᵐ (a : α) μ, a s a t
theorem MeasureTheory.measurable_comp_comap {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace β} { : MeasurableSpace γ} (f : αβ) {g : βγ} (hg : Measurable g) :
theorem MeasureTheory.MeasurableSet.imp {α : Type u_1} { : MeasurableSpace α} {p q : αProp} (hs : MeasurableSet {x : α | p x}) (ht : MeasurableSet {x : α | q x}) :
MeasurableSet {x : α | p xq x}
theorem MeasureTheory.MeasurableSet.iff {α : Type u_1} { : MeasurableSpace α} {p q : αProp} (hs : MeasurableSet {x : α | p x}) (ht : MeasurableSet {x : α | q x}) :
MeasurableSet {x : α | p x q x}
theorem MeasureTheory.Measurable.coe_nat_enat {α : Type u_1} { : MeasurableSpace α} {f : α} (hf : Measurable f) :
Measurable fun (a : α) => (f a)
theorem MeasureTheory.Measurable.toNat {α : Type u_1} { : MeasurableSpace α} {f : αℕ∞} (hf : Measurable f) :
Measurable fun (a : α) => (f a).toNat
theorem MeasureTheory.Measure.trim_comap_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} {μ : Measure α} {X : αβ} (hX : Measurable X) {s : Set β} (hs : MeasurableSet s) :
(μ.trim ) (X ⁻¹' s) = (map X μ) s
theorem MeasureTheory.measurable_sum_range_of_le {α : Type u_1} { : MeasurableSpace α} {f : α} {g : α} {n : } (hg_le : ∀ (a : α), g a n) (hf : ∀ (i : ), Measurable (f i)) (hg : Measurable g) :
Measurable fun (a : α) => iFinset.range (g a), f i a
theorem MeasureTheory.measurable_sum_Icc_of_le {α : Type u_1} { : MeasurableSpace α} {f : α} {g : α} {n : } (hg_le : ∀ (a : α), g a n) (hf : ∀ (i : ), Measurable (f i)) (hg : Measurable g) :
Measurable fun (a : α) => iFinset.Icc 1 (g a), f i a