Documentation
LeanBandits
.
AlgorithmAndRandomVariables
Search
return to top
source
Imports
Init
LeanBandits.AlgorithmBuilding
LeanBandits.Regret
Imported by
Bandits
.
pullCount_add_one_eq_pullCount'
Bandits
.
pullCount_eq_pullCount'
Bandits
.
sumRewards_add_one_eq_sumRewards'
Bandits
.
sumRewards_eq_sumRewards'
Bandits
.
empMean_add_one_eq_empMean'
Bandits
.
empMean_eq_empMean'
Equalities between definitions of random variables used in bandit algorithms
#
source
theorem
Bandits
.
pullCount_add_one_eq_pullCount'
{
K
:
ℕ
}
{
a
:
Fin
K
}
{
n
:
ℕ
}
{
h
:
ℕ
→
Fin
K
×
ℝ
}
:
pullCount
a
(
n
+
1
)
h
=
pullCount'
n
(fun (
i
:
{
x
:
ℕ
//
x
∈
Finset.Iic
n
}
) =>
h
↑
i
)
a
source
theorem
Bandits
.
pullCount_eq_pullCount'
{
K
:
ℕ
}
{
a
:
Fin
K
}
{
n
:
ℕ
}
{
h
:
ℕ
→
Fin
K
×
ℝ
}
(
hn
:
n
≠
0
)
:
pullCount
a
n
h
=
pullCount'
(
n
-
1
)
(fun (
i
:
{
x
:
ℕ
//
x
∈
Finset.Iic
(
n
-
1
)
}
) =>
h
↑
i
)
a
source
theorem
Bandits
.
sumRewards_add_one_eq_sumRewards'
{
K
:
ℕ
}
{
a
:
Fin
K
}
{
n
:
ℕ
}
{
h
:
ℕ
→
Fin
K
×
ℝ
}
:
sumRewards
a
(
n
+
1
)
h
=
sumRewards'
n
(fun (
i
:
{
x
:
ℕ
//
x
∈
Finset.Iic
n
}
) =>
h
↑
i
)
a
source
theorem
Bandits
.
sumRewards_eq_sumRewards'
{
K
:
ℕ
}
{
a
:
Fin
K
}
{
n
:
ℕ
}
{
h
:
ℕ
→
Fin
K
×
ℝ
}
(
hn
:
n
≠
0
)
:
sumRewards
a
n
h
=
sumRewards'
(
n
-
1
)
(fun (
i
:
{
x
:
ℕ
//
x
∈
Finset.Iic
(
n
-
1
)
}
) =>
h
↑
i
)
a
source
theorem
Bandits
.
empMean_add_one_eq_empMean'
{
K
:
ℕ
}
{
a
:
Fin
K
}
{
n
:
ℕ
}
{
h
:
ℕ
→
Fin
K
×
ℝ
}
:
empMean
a
(
n
+
1
)
h
=
empMean'
n
(fun (
i
:
{
x
:
ℕ
//
x
∈
Finset.Iic
n
}
) =>
h
↑
i
)
a
source
theorem
Bandits
.
empMean_eq_empMean'
{
K
:
ℕ
}
{
a
:
Fin
K
}
{
n
:
ℕ
}
{
h
:
ℕ
→
Fin
K
×
ℝ
}
(
hn
:
n
≠
0
)
:
empMean
a
n
h
=
empMean'
(
n
-
1
)
(fun (
i
:
{
x
:
ℕ
//
x
∈
Finset.Iic
(
n
-
1
)
}
) =>
h
↑
i
)
a