Documentation

Mathlib.Topology.UniformSpace.LocallyUniformConvergence

Locally uniform convergence #

We define a sequence of functions Fₙ to converge locally uniformly to a limiting function f with respect to a filter p, spelled TendstoLocallyUniformly F f p, if for any x ∈ s and any entourage of the diagonal u, there is a neighbourhood v of x such that p-eventually we have (f y, Fₙ y) ∈ u for all y ∈ v.

It is important to note that this definition is somewhat non-standard; it is not in general equivalent to "every point has a neighborhood on which the convergence is uniform", which is the definition more commonly encountered in the literature. The reason is that in our definition the neighborhood v of x can depend on the entourage u; so our condition is a priori weaker than the usual one, although the two conditions are equivalent if the domain is locally compact. See tendstoLocallyUniformlyOn_of_forall_exists_nhd for the one-way implication; the equivalence assuming local compactness is part of tendstoLocallyUniformlyOn_TFAE.

We adopt this weaker condition because it is more general but appears to be sufficient for the standard applications of locally-uniform convergence (in particular, for proving that a locally-uniform limit of continuous functions is continuous).

We also define variants for locally uniform convergence on a subset, called TendstoLocallyUniformlyOn F f p s.

Tags #

Uniform limit, uniform convergence, tends uniformly to

def TendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) (s : Set α) :

A sequence of functions Fₙ converges locally uniformly on a set s to a limiting function f with respect to a filter p if, for any entourage of the diagonal u, for any x ∈ s, one has p-eventually (f y, Fₙ y) ∈ u for all y in a neighborhood of x in s.

Equations
Instances For
    def TendstoLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) :

    A sequence of functions Fₙ converges locally uniformly to a limiting function f with respect to a filter p if, for any entourage of the diagonal u, for any x, one has p-eventually (f y, Fₙ y) ∈ u for all y in a neighborhood of x.

    Equations
    Instances For
      theorem tendstoLocallyUniformlyOn_univ {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
      theorem tendstoLocallyUniformlyOn_iff_forall_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      TendstoLocallyUniformlyOn F f p s xs, Filter.Tendsto (fun (y : ι × α) => (f y.2, F y.1 y.2)) (p ×ˢ nhdsWithin x s) (uniformity β)
      theorem IsOpen.tendstoLocallyUniformlyOn_iff_forall_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hs : IsOpen s) :
      TendstoLocallyUniformlyOn F f p s xs, Filter.Tendsto (fun (y : ι × α) => (f y.2, F y.1 y.2)) (p ×ˢ nhds x) (uniformity β)
      theorem tendstoLocallyUniformly_iff_forall_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
      TendstoLocallyUniformly F f p ∀ (x : α), Filter.Tendsto (fun (y : ι × α) => (f y.2, F y.1 y.2)) (p ×ˢ nhds x) (uniformity β)
      theorem tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      TendstoLocallyUniformlyOn F f p s TendstoLocallyUniformly (fun (i : ι) (x : s) => F i x) (f Subtype.val) p
      theorem TendstoUniformlyOn.tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : TendstoUniformlyOn F f p s) :
      theorem TendstoUniformly.tendstoLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (h : TendstoUniformly F f p) :
      theorem TendstoLocallyUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s s' : Set α} {p : Filter ι} (h : TendstoLocallyUniformlyOn F f p s) (h' : s' s) :
      theorem tendstoLocallyUniformlyOn_iUnion {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {ι' : Sort u_5} {S : ι'Set α} (hS : ∀ (i : ι'), IsOpen (S i)) (h : ∀ (i : ι'), TendstoLocallyUniformlyOn F f p (S i)) :
      TendstoLocallyUniformlyOn F f p (⋃ (i : ι'), S i)
      theorem tendstoLocallyUniformlyOn_biUnion {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {s : Set γ} {S : γSet α} (hS : is, IsOpen (S i)) (h : is, TendstoLocallyUniformlyOn F f p (S i)) :
      TendstoLocallyUniformlyOn F f p (⋃ is, S i)
      theorem tendstoLocallyUniformlyOn_sUnion {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (S : Set (Set α)) (hS : sS, IsOpen s) (h : sS, TendstoLocallyUniformlyOn F f p s) :
      theorem TendstoLocallyUniformlyOn.union {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s s' : Set α} {p : Filter ι} (hs₁ : IsOpen s) (hs₂ : IsOpen s') (h₁ : TendstoLocallyUniformlyOn F f p s) (h₂ : TendstoLocallyUniformlyOn F f p s') :
      theorem TendstoLocallyUniformly.tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : TendstoLocallyUniformly F f p) :
      theorem tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [CompactSpace α] :

      On a compact space, locally uniform convergence is just uniform convergence.

      theorem tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hs : IsCompact s) :

      For a compact set s, locally uniform convergence on s is just uniform convergence on s.

      theorem TendstoLocallyUniformlyOn.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [TopologicalSpace γ] {t : Set γ} (h : TendstoLocallyUniformlyOn F f p s) (g : γα) (hg : Set.MapsTo g t s) (cg : ContinuousOn g t) :
      TendstoLocallyUniformlyOn (fun (n : ι) => F n g) (f g) p t
      theorem TendstoLocallyUniformly.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [TopologicalSpace γ] (h : TendstoLocallyUniformly F f p) (g : γα) (cg : Continuous g) :
      TendstoLocallyUniformly (fun (n : ι) => F n g) (f g) p
      theorem tendstoLocallyUniformlyOn_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : xs, tnhdsWithin x s, TendstoUniformlyOn F f p t) :

      If every x ∈ s has a neighbourhood within s on which F i tends uniformly to f, then F i tends locally uniformly on s to f.

      Note this is not a tautology, since our definition of TendstoLocallyUniformlyOn is slightly more general (although the conditions are equivalent if β is locally compact and s is open, see tendstoLocallyUniformlyOn_TFAE).

      theorem tendstoLocallyUniformly_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (h : ∀ (x : α), tnhds x, TendstoUniformlyOn F f p t) :

      If every x has a neighbourhood on which F i tends uniformly to f, then F i tends locally uniformly to f. (Special case of tendstoLocallyUniformlyOn_of_forall_exists_nhd where s = univ.)

      theorem tendstoLocallyUniformlyOn_TFAE {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {s : Set α} [LocallyCompactSpace α] (G : ιαβ) (g : αβ) (p : Filter ι) (hs : IsOpen s) :
      [TendstoLocallyUniformlyOn G g p s, Ks, IsCompact KTendstoUniformlyOn G g p K, xs, vnhdsWithin x s, TendstoUniformlyOn G g p v].TFAE
      theorem tendstoLocallyUniformlyOn_iff_forall_isCompact {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [LocallyCompactSpace α] (hs : IsOpen s) :
      TendstoLocallyUniformlyOn F f p s Ks, IsCompact KTendstoUniformlyOn F f p K
      theorem tendstoLocallyUniformly_iff_forall_isCompact {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [LocallyCompactSpace α] :
      TendstoLocallyUniformly F f p ∀ (K : Set α), IsCompact KTendstoUniformlyOn F f p K
      theorem tendstoLocallyUniformlyOn_iff_filter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      theorem tendstoLocallyUniformly_iff_filter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
      theorem TendstoLocallyUniformlyOn.tendsto_at {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hf : TendstoLocallyUniformlyOn F f p s) {a : α} (ha : a s) :
      Filter.Tendsto (fun (i : ι) => F i a) p (nhds (f a))
      theorem TendstoLocallyUniformlyOn.unique {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [p.NeBot] [T2Space β] {g : αβ} (hf : TendstoLocallyUniformlyOn F f p s) (hg : TendstoLocallyUniformlyOn F g p s) :
      Set.EqOn f g s
      theorem TendstoLocallyUniformlyOn.congr {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {G : ιαβ} (hf : TendstoLocallyUniformlyOn F f p s) (hg : ∀ (n : ι), Set.EqOn (F n) (G n) s) :
      theorem TendstoLocallyUniformlyOn.congr_right {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {g : αβ} (hf : TendstoLocallyUniformlyOn F f p s) (hg : Set.EqOn f g s) :