Order topology on WithTop ι #
When ι is a topological space with the order topology, we also endow WithTop ι with the order
topology. If ι is second countable, we prove that WithTop ι also is.
instance
TopologicalSpace.instWithTopOfOrderTopology
{ι : Type u_1}
[Preorder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
instance
TopologicalSpace.instOrderTopologyWithTop
{ι : Type u_1}
[Preorder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
OrderTopology (WithTop ι)
instance
TopologicalSpace.instSecondCountableTopologyWithTop
{ι : Type u_1}
[Preorder ι]
[ts : TopologicalSpace ι]
[ht : OrderTopology ι]
[SecondCountableTopology ι]
 :
theorem
WithTop.isEmbedding_coe
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
theorem
WithTop.isOpenEmbedding_coe
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
theorem
WithTop.nhds_coe
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
{r : ι}
 :
theorem
WithTop.continuous_coe
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
theorem
WithTop.tendsto_untopD
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
(d : ι)
{a : WithTop ι}
(ha : a ≠ ⊤)
 :
Filter.Tendsto (untopD d) (nhds a) (nhds (untopD d a))
theorem
WithTop.continuousOn_untopD
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
(d : ι)
 :
theorem
WithTop.tendsto_untopA
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
[Nonempty ι]
{a : WithTop ι}
(ha : a ≠ ⊤)
 :
Filter.Tendsto untopA (nhds a) (nhds a.untopA)
theorem
WithTop.continuousOn_untopA
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
[Nonempty ι]
 :
theorem
WithTop.tendsto_untop
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
(a : ↑{a : WithTop ι | a ≠ ⊤})
 :
theorem
WithTop.continuous_untop
{ι : Type u_1}
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
noncomputable def
WithTop.neTopHomeomorph
(ι : Type u_1)
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
 :
Homeomorphism between the non-top elements of WithTop ι and ι.
Equations
- WithTop.neTopHomeomorph ι = { toEquiv := Equiv.withTopSubtypeNe, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
noncomputable def
WithTop.sumHomeomorph
(ι : Type u_1)
[LinearOrder ι]
[TopologicalSpace ι]
[OrderTopology ι]
[OrderTop ι]
 :
If ι has a top element, then WithTop ι is homeomorphic to ι ⊕ Unit.
Equations
- One or more equations did not get rendered due to their size.