Polynomials and limits #
In this file we prove the following lemmas.
- Polynomial.continuous_eval₂:- Polynomial.eval₂defines a continuous function.
- Polynomial.continuous_aeval:- Polynomial.aevaldefines a continuous function; we also prove convenience lemmas- Polynomial.continuousAt_aeval,- Polynomial.continuousWithinAt_aeval,- Polynomial.continuousOn_aeval.
- Polynomial.continuous:- Polynomial.evaldefines a continuous functions; we also prove convenience lemmas- Polynomial.continuousAt,- Polynomial.continuousWithinAt,- Polynomial.continuousOn.
- Polynomial.tendsto_norm_atTop:- fun x ↦ ‖Polynomial.eval (z x) p‖tends to infinity provided that- fun x ↦ ‖z x‖tends to infinity and- 0 < degree p;
- Polynomial.tendsto_abv_eval₂_atTop,- Polynomial.tendsto_abv_atTop,- Polynomial.tendsto_abv_aeval_atTop: a few versions of the previous statement for- IsAbsoluteValue abvinstead of norm.
Tags #
Polynomial, continuity
theorem
Polynomial.continuous_eval₂
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[TopologicalSpace R]
[IsTopologicalSemiring R]
[Semiring S]
(p : Polynomial S)
(f : S →+* R)
 :
Continuous fun (x : R) => eval₂ f x p
theorem
Polynomial.continuous
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[IsTopologicalSemiring R]
(p : Polynomial R)
 :
Continuous fun (x : R) => eval x p
theorem
Polynomial.continuousAt
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[IsTopologicalSemiring R]
(p : Polynomial R)
{a : R}
 :
ContinuousAt (fun (x : R) => eval x p) a
theorem
Polynomial.continuousWithinAt
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[IsTopologicalSemiring R]
(p : Polynomial R)
{s : Set R}
{a : R}
 :
ContinuousWithinAt (fun (x : R) => eval x p) s a
theorem
Polynomial.continuousOn
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[IsTopologicalSemiring R]
(p : Polynomial R)
{s : Set R}
 :
ContinuousOn (fun (x : R) => eval x p) s
theorem
Polynomial.continuous_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
(p : Polynomial R)
 :
Continuous fun (x : A) => (aeval x) p
theorem
Polynomial.continuousAt_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
(p : Polynomial R)
{a : A}
 :
ContinuousAt (fun (x : A) => (aeval x) p) a
theorem
Polynomial.continuousWithinAt_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
(p : Polynomial R)
{s : Set A}
{a : A}
 :
ContinuousWithinAt (fun (x : A) => (aeval x) p) s a
theorem
Polynomial.continuousOn_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
(p : Polynomial R)
{s : Set A}
 :
ContinuousOn (fun (x : A) => (aeval x) p) s
theorem
Polynomial.tendsto_abv_eval₂_atTop
{R : Type u_1}
{S : Type u_2}
{k : Type u_3}
{α : Type u_4}
[Semiring R]
[Ring S]
[Field k]
[LinearOrder k]
[IsStrictOrderedRing k]
(f : R →+* S)
(abv : S → k)
[IsAbsoluteValue abv]
(p : Polynomial R)
(hd : 0 < p.degree)
(hf : f p.leadingCoeff ≠ 0)
{l : Filter α}
{z : α → S}
(hz : Filter.Tendsto (abv ∘ z) l Filter.atTop)
 :
Filter.Tendsto (fun (x : α) => abv (eval₂ f (z x) p)) l Filter.atTop
theorem
Polynomial.tendsto_abv_atTop
{R : Type u_1}
{k : Type u_2}
{α : Type u_3}
[Ring R]
[Field k]
[LinearOrder k]
[IsStrictOrderedRing k]
(abv : R → k)
[IsAbsoluteValue abv]
(p : Polynomial R)
(h : 0 < p.degree)
{l : Filter α}
{z : α → R}
(hz : Filter.Tendsto (abv ∘ z) l Filter.atTop)
 :
Filter.Tendsto (fun (x : α) => abv (eval (z x) p)) l Filter.atTop
theorem
Polynomial.tendsto_abv_aeval_atTop
{R : Type u_1}
{A : Type u_2}
{k : Type u_3}
{α : Type u_4}
[CommSemiring R]
[Ring A]
[Algebra R A]
[Field k]
[LinearOrder k]
[IsStrictOrderedRing k]
(abv : A → k)
[IsAbsoluteValue abv]
(p : Polynomial R)
(hd : 0 < p.degree)
(h₀ : (algebraMap R A) p.leadingCoeff ≠ 0)
{l : Filter α}
{z : α → A}
(hz : Filter.Tendsto (abv ∘ z) l Filter.atTop)
 :
Filter.Tendsto (fun (x : α) => abv ((aeval (z x)) p)) l Filter.atTop
theorem
Polynomial.tendsto_norm_atTop
{α : Type u_1}
{R : Type u_2}
[NormedRing R]
[IsAbsoluteValue norm]
(p : Polynomial R)
(h : 0 < p.degree)
{l : Filter α}
{z : α → R}
(hz : Filter.Tendsto (fun (x : α) => ‖z x‖) l Filter.atTop)
 :
Filter.Tendsto (fun (x : α) => ‖eval (z x) p‖) l Filter.atTop
theorem
Polynomial.exists_forall_norm_le
{R : Type u_2}
[NormedRing R]
[IsAbsoluteValue norm]
[ProperSpace R]
(p : Polynomial R)
 :
theorem
Polynomial.coeff_bdd_of_roots_le
{F : Type u_3}
{K : Type u_4}
[CommRing F]
[NormedField K]
{B : ℝ}
{d : ℕ}
(f : F →+* K)
{p : Polynomial F}
(h1 : p.Monic)
(h2 : Splits f p)
(h3 : p.natDegree ≤ d)
(h4 : ∀ z ∈ (map f p).roots, ‖z‖ ≤ B)
(i : ℕ)
 :
The coefficients of the monic polynomials of bounded degree with bounded roots are uniformly bounded.