Documentation

Mathlib.Topology.Algebra.MetricSpace.Lipschitz

Lipschitz continuous functions #

This file develops Lipschitz continuous functions further with some results that depend on algebra.

theorem LipschitzWith.cauchySeq_comp {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {K : NNReal} {f : αβ} (hf : LipschitzWith K f) {u : α} (hu : CauchySeq u) :
theorem LipschitzOnWith.cauchySeq_comp {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {K : NNReal} {s : Set α} {f : αβ} (hf : LipschitzOnWith K f s) {u : α} (hu : CauchySeq u) (h'u : Set.range u s) :
theorem continuousAt_of_locally_lipschitz {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {f : αβ} {x : α} {r : } (hr : 0 < r) (K : ) (h : ∀ (y : α), dist y x < rdist (f y) (f x) K * dist y x) :

If a function is locally Lipschitz around a point, then it is continuous at this point.