Documentation

Mathlib.RingTheory.TensorProduct.Pi

Tensor product and products of algebras #

In this file we examine the behaviour of the tensor product with (finite) products. This is a direct application of Mathlib/LinearAlgebra/TensorProduct/Pi.lean to the algebra case.

@[simp]
theorem Algebra.TensorProduct.piRightHom_one (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] :
@[simp]
theorem Algebra.TensorProduct.piRightHom_mul {R : Type u_1} {S : Type u_2} {A : Type u_3} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} {B : ιType u_5} [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] (x y : TensorProduct R A ((i : ι) → B i)) :
noncomputable def Algebra.TensorProduct.piRightHom (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] :
TensorProduct R A ((i : ι) → B i) →ₐ[S] (i : ι) → TensorProduct R A (B i)

The canonical map A ⊗[R] (∀ i, B i) →ₐ[S] ∀ i, A ⊗[R] B i. This is an isomorphism if ι is finite (see Algebra.TensorProduct.piRight).

Equations
Instances For
    noncomputable def Algebra.TensorProduct.piRight (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] [Fintype ι] [DecidableEq ι] :
    TensorProduct R A ((i : ι) → B i) ≃ₐ[S] (i : ι) → TensorProduct R A (B i)

    Tensor product of rings commutes with finite products on the right.

    Equations
    Instances For
      @[simp]
      theorem Algebra.TensorProduct.piRight_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] [Fintype ι] [DecidableEq ι] (x : A) (f : (i : ι) → B i) :
      (piRight R S A B) (x ⊗ₜ[R] f) = fun (j : ι) => x ⊗ₜ[R] f j
      noncomputable def Algebra.TensorProduct.piScalarRight (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (ι : Type u_4) [Fintype ι] [DecidableEq ι] :
      TensorProduct R A (ιR) ≃ₐ[S] ιA

      Variant of Algebra.TensorProduct.piRight with constant factors.

      Equations
      Instances For
        theorem Algebra.TensorProduct.piScalarRight_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} [Fintype ι] [DecidableEq ι] (x : A) (y : ιR) :
        (piScalarRight R S A ι) (x ⊗ₜ[R] y) = fun (i : ι) => y i x
        @[simp]
        theorem Algebra.TensorProduct.piScalarRight_tmul_apply (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} [Fintype ι] [DecidableEq ι] (x : A) (y : ιR) (i : ι) :
        (piScalarRight R S A ι) (x ⊗ₜ[R] y) i = y i x
        noncomputable def Algebra.TensorProduct.prodRight (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (B : Type u_6) (C : Type u_7) [Semiring B] [Semiring C] [Algebra R B] [Algebra R C] :

        Tensor product of rings commutes with binary products on the right.

        Equations
        Instances For
          theorem Algebra.TensorProduct.prodRight_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (B : Type u_6) (C : Type u_7) [Semiring B] [Semiring C] [Algebra R B] [Algebra R C] (a : A) (x : B × C) :
          (prodRight R S A B C) (a ⊗ₜ[R] x) = (a ⊗ₜ[R] x.1, a ⊗ₜ[R] x.2)
          @[simp]
          theorem Algebra.TensorProduct.prodRight_tmul_fst (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (B : Type u_6) (C : Type u_7) [Semiring B] [Semiring C] [Algebra R B] [Algebra R C] (a : A) (x : B × C) :
          ((prodRight R S A B C) (a ⊗ₜ[R] x)).1 = a ⊗ₜ[R] x.1
          @[simp]
          theorem Algebra.TensorProduct.prodRight_tmul_snd (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (B : Type u_6) (C : Type u_7) [Semiring B] [Semiring C] [Algebra R B] [Algebra R C] (a : A) (x : B × C) :
          ((prodRight R S A B C) (a ⊗ₜ[R] x)).2 = a ⊗ₜ[R] x.2
          @[simp]
          theorem Algebra.TensorProduct.prodRight_symm_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] (B : Type u_6) (C : Type u_7) [Semiring B] [Semiring C] [Algebra R B] [Algebra R C] (a : A) (b : B) (c : C) :
          (prodRight R S A B C).symm (a ⊗ₜ[R] b, a ⊗ₜ[R] c) = a ⊗ₜ[R] (b, c)