Bézout rings #
A Bézout ring (Bezout ring) is a ring whose finitely generated ideals are principal. Notable examples include principal ideal rings, valuation rings, and the ring of algebraic integers.
Main results #
- IsBezout.iff_span_pair_isPrincipal: It suffices to verify every- span {x, y}is principal.
- IsBezout.TFAE: For a Bézout domain, Noetherian ↔ PID ↔ UFD ↔ ACCP
theorem
Function.Surjective.isBezout
{R : Type u}
[CommRing R]
{S : Type v}
[CommRing S]
(f : R →+* S)
(hf : Surjective ⇑f)
[IsBezout R]
 :
IsBezout S