Documentation

Mathlib.Order.Atoms.Finite

Atoms, Coatoms, Simple Lattices, and Finiteness #

This module contains some results on atoms and simple lattices in the finite context.

Main results #

It is important that IsSimpleOrder is the last type-class argument of this instance, so that type-class inference fails quickly if it doesn't apply.

Note that as of 2025-08-13, this is false. Could someone investigate?

Equations
Instances For
    @[instance 100]
    instance Finite.to_isCoatomic {α : Type u_1} [PartialOrder α] [OrderTop α] [Finite α] :
    @[instance 100]
    instance Finite.to_isAtomic {α : Type u_1} [PartialOrder α] [OrderBot α] [Finite α] :
    theorem exists_covby_infinite_Ici_of_infinite_Ici {α : Type u_1} [PartialOrder α] {a : α} [IsStronglyAtomic α] (ha : (Set.Ici a).Infinite) (hfin : {x : α | a x}.Finite) :
    ∃ (b : α), a b (Set.Ici b).Infinite
    theorem exists_covby_infinite_Iic_of_infinite_Iic {α : Type u_1} [PartialOrder α] {a : α} [IsStronglyCoatomic α] (ha : (Set.Iic a).Infinite) (hfin : {x : α | x a}.Finite) :
    ∃ (b : α), b a (Set.Iic b).Infinite