The Dedekind zeta function of a number field #
In this file, we define and prove results about the Dedekind zeta function of a number field.
Main definitions and results #
NumberField.dedekindZeta
: the Dedekind zeta function.NumberField.dedekindZeta_residue
: the value of the residue ats = 1
of the Dedekind zeta function.NumberField.tendsto_sub_one_mul_dedekindZeta_nhdsGT
: Dirichlet class number formula computation of the residue of the Dedekind zeta function ats = 1
, see Chap. 7 of [D. Marcus, Number Fields][marcus1977number]
TODO #
Generalize the construction of the Dedekind zeta function.
The Dedekind zeta function of a number field. It is defined as the L
-series with coefficients
the number of integral ideals of norm n
.
Equations
- NumberField.dedekindZeta K s = LSeries (fun (n : ℕ) => ↑(Nat.card { I : Ideal (NumberField.RingOfIntegers K) // Ideal.absNorm I = n })) s
Instances For
The value of the residue at s = 1
of the Dedekind zeta function, see
NumberField.tendsto_sub_one_mul_dedekindZeta_nhdsGT
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NumberField.dedekindZeta_residue_def
(K : Type u_1)
[Field K]
[NumberField K]
:
dedekindZeta_residue K = 2 ^ InfinitePlace.nrRealPlaces K * (2 * Real.pi) ^ InfinitePlace.nrComplexPlaces K * Units.regulator K * ↑(classNumber K) / (↑(Units.torsionOrder K) * √|↑(discr K)|)
theorem
NumberField.tendsto_sub_one_mul_dedekindZeta_nhdsGT
(K : Type u_1)
[Field K]
[NumberField K]
:
Filter.Tendsto (fun (s : ℝ) => (↑s - 1) * dedekindZeta K ↑s) (nhdsWithin 1 (Set.Ioi 1)) (nhds ↑(dedekindZeta_residue K))
Dirichlet class number formula