Slash actions #
This file defines a class of slash actions, which are families of right actions of a given group
parametrized by some Type. This is modeled on the slash action of GLPos (Fin 2) ℝ
on the space
of modular forms.
Notation #
In the ModularForm
locale, this provides
f ∣[k;γ] A
: thek
thγ
-compatible slash action byA
onf
f ∣[k] A
: thek
thℂ
-compatible slash action byA
onf
; a shorthand forf ∣[k;ℂ] A
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
monoidHomSlashAction
{β : Type u_1}
{G : Type u_2}
{H : Type u_3}
{α : Type u_4}
{γ : Type u_5}
[Group G]
[AddMonoid α]
[SMul γ α]
[Group H]
[SlashAction β G α γ]
(h : H →* G)
:
SlashAction β H α γ
Slash_action induced by a monoid homomorphism.
Equations
- monoidHomSlashAction h = { map := fun (k : β) (g : H) => SlashAction.map γ k (h g), zero_slash := ⋯, slash_one := ⋯, slash_mul := ⋯, add_slash := ⋯ }
Instances For
The weight k
action of GL (Fin 2) ℝ
on functions f : ℍ → ℂ
.
Equations
- ModularForm.slash k γ f x = (UpperHalfPlane.σ γ) (f (γ • x)) * ↑↑(Matrix.GeneralLinearGroup.det γ) ^ (k - 1) * UpperHalfPlane.denom γ ↑x ^ (-k)
Instances For
instance
ModularForm.instSlashActionIntGeneralLinearGroupFinOfNatNatRealForallUpperHalfPlaneComplex :
SlashAction ℤ (GL (Fin 2) ℝ) (UpperHalfPlane → ℂ) ℂ
Equations
- One or more equations did not get rendered due to their size.
theorem
ModularForm.slash_def
{k : ℤ}
(f : UpperHalfPlane → ℂ)
(g : GL (Fin 2) ℝ)
:
SlashAction.map ℂ k g f = fun (τ : UpperHalfPlane) =>
(UpperHalfPlane.σ g) (f (g • τ)) * ↑↑(Matrix.GeneralLinearGroup.det g) ^ (k - 1) * UpperHalfPlane.denom g ↑τ ^ (-k)
theorem
ModularForm.slash_apply
{k : ℤ}
(f : UpperHalfPlane → ℂ)
(g : GL (Fin 2) ℝ)
(τ : UpperHalfPlane)
:
SlashAction.map ℂ k g f τ = (UpperHalfPlane.σ g) (f (g • τ)) * ↑↑(Matrix.GeneralLinearGroup.det g) ^ (k - 1) * UpperHalfPlane.denom g ↑τ ^ (-k)
theorem
ModularForm.SL_slash
{k : ℤ}
(f : UpperHalfPlane → ℂ)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
:
SlashAction.map ℂ k γ f = SlashAction.map ℂ k (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom ℝ)) γ)) f
theorem
ModularForm.SL_slash_def
{k : ℤ}
(f : UpperHalfPlane → ℂ)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
:
SlashAction.map ℂ k γ f = fun (τ : UpperHalfPlane) =>
f (γ • τ) * UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom ℝ)) γ)) ↑τ ^ (-k)
theorem
ModularForm.SL_slash_apply
{k : ℤ}
(f : UpperHalfPlane → ℂ)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
(τ : UpperHalfPlane)
:
SlashAction.map ℂ k γ f τ = f (γ • τ) * UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom ℝ)) γ)) ↑τ ^ (-k)
@[simp]
theorem
ModularForm.SL_smul_slash
{α : Type u_1}
[SMul α ℂ]
[IsScalarTower α ℂ ℂ]
(k : ℤ)
(A : Matrix.SpecialLinearGroup (Fin 2) ℤ)
(f : UpperHalfPlane → ℂ)
(c : α)
:
The constant function 1 is invariant under any element of SL(2, ℤ)
.
@[simp]
Variant of is_invariant_one
with the left hand side in simp normal form.
theorem
ModularForm.slash_action_eq'_iff
(k : ℤ)
(f : UpperHalfPlane → ℂ)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
(z : UpperHalfPlane)
:
A function f : ℍ → ℂ
is slash-invariant, of weight k ∈ ℤ
and level Γ
,
if for every matrix γ ∈ Γ
we have f(γ • z)= (c*z+d)^k f(z)
where γ= ![![a, b], ![c, d]]
,
and it acts on ℍ
via Möbius transformations.
theorem
ModularForm.mul_slash
(k1 k2 : ℤ)
(A : GL (Fin 2) ℝ)
(f g : UpperHalfPlane → ℂ)
:
SlashAction.map ℂ (k1 + k2) A (f * g) = ↑(Matrix.GeneralLinearGroup.det A) • (SlashAction.map ℂ k1 A f * SlashAction.map ℂ k2 A g)
theorem
ModularForm.mul_slash_SL2
(k1 k2 : ℤ)
(A : Matrix.SpecialLinearGroup (Fin 2) ℤ)
(f g : UpperHalfPlane → ℂ)
: